

A Generic Tool to Browse Tutor-Student
Interactions: Time Will Tell!

Jack Mostow, Joseph Beck, Andrew Cuneo, Evandro Gouvea, and Cecily Heiner

Project LISTEN (www.cs.cmu.edu/~listen), Carnegie Mellon University
RI-NSH 4213, 5000 Forbes Avenue, Pittsburgh, PA. USA 15213-3890

Abstract. A basic question in mining data from an intelligent tutoring system is, “What
happened when…?” A generic tool to answer such questions should let the user specify
which phenomenon to explore; explore selected events and the context in which they
occurred; and require minimal effort to adapt the tool to new versions, to new users, or
to other tutors. We describe an implemented tool and how it meets these requirements.
The tool applies to MySQL databases whose representation of tutorial events includes
student, computer, start time, and end time. It infers the implicit hierarchical structure
of tutorial interaction so humans can browse it. A companion paper [1] illustrates the
use of this tool to explore data from Project LISTEN’s automated Reading Tutor.

1. Introduction

Intelligent tutoring systems’ ability to log their interactions with students poses both an
opportunity and a challenge. Compared to human observation of live or videotaped tutoring,
such logs can be more extensive in the number of students, more comprehensive in the number
of sessions, and more exquisite in the level of detail. They avoid observer effects, cost less to
obtain, and are easier to analyze. For example, Project LISTEN’s Reading Tutor listens to
children read aloud, and helps them learn to read [2]. A Reading Tutor session consists of
reading a number of stories. The Reading Tutor displays a story one sentence at a time, and
records the child’s utterances for each sentence. The Reading Tutor logs each event
(session, story, sentence, utterance, …) into a database table for that event type. Data from
tutors at different schools flows into an aggregated MySQL database server [3]. Our 2003-
2004 database includes 54,138 sessions, 162,031 story readings, 1,634,660 sentences,
3,555,487 utterances, and 10,575,571 words. Such data is a potential gold mine [4].
 Mining such data requires the right tools to locate promising areas, obtain samples,
and analyze them. One part of this process is in-depth qualitative analysis of individual
tutorial events. Such case analyses serve various purposes, for example:

• Spot-check tutoring sessions to discover undesirable tutor-student interactions.
• Identify the most common types of cases in which a specified phenomenon occurs.
• Formulate hypotheses by identifying features that examples suggest are relevant.
• Sanity-check a hypothesis by checking that it covers the intended sorts of examples.

 This paper describes a tool, implemented as a Java™ program that queries MySQL
databases, that supports such case analysis by exploiting three simple but powerful ideas.
First, a student, computer, and time interval suffice to specify an event. Second, a
containment relation between time intervals defines a hierarchical structure of tutorial
interactions. Third, the first two ideas make it possible to implement a generic but flexible
tool for mining tutor data with minimal dependency on tutor-specific details.

2. Specify which phenomenon to explore.

First, how can we specify events to explore? A deployed tutor collects too much data to
look at, so the first step in mining it is to select a sample. A database query language
provides the power and flexibility to describe and efficiently locate phenomena of interest.

http://www.cs.cmu.edu/~listen

For example, the query “select * from utterance order by rand() limit 10”
selects a random sample of 10 from the table of student utterances. Whether the task is to
spot-check for bugs, identify common cases, formulate hypotheses, or check their sanity,
our mantra is “check (at least) ten random examples.” Random selection assures variety
and avoids the sample bias of, for example, picking the first ten examples in the database.

Although an arbitrary sample like this one is often informative, a query can focus on
a particular phenomenon of interest, such as: Which questions did students take longest to
answer? Or: When did students get stuck long enough for the Reading Tutor to prompt
them? Exploring examples of such phenomena can help the researcher spot common
features and formulate causal hypotheses to test with statistical methods on aggregated data.

Second, what information suffices to identify a tutorial interaction? A key insight
here is that student, computer, and time interval are sufficient, because together they
uniquely specify the student’s interaction with the tutor during that time interval. (We
include computer ID in case the student ID is not unique.) This “lowest common
denominator” should apply universally to virtually any tutor.
 Third, how can we translate the result of a query into a set of tutorial events? The
tool scans the labels returned as part of the query, and finds the columns for student,
computer, start time, and end time. The code assumes particular names for these columns,
e.g. “user_id” for student, “machine_name” for computer, and “start_time” for start
time. If necessary the user can enforce this naming convention, e.g., by inserting “as
start_time” in the query to relabel the column. We require that the fields for student,
computer, start time, and end time be keys in the database tables. Indexing tables on these
fields enables fast response by the tool even for tables with millions of records.

3. Explore selected events and the context in which they occurred.

What context frames an event? Our answer is: “its chain of ancestor events.” E.g., the
context of a word includes the utterance, sentence, story, and session in which it was read.

How can we discern the hierarchical structure of student-tutor interaction? At first
we computed this hierarchy using its hardwired schema for the Reading Tutor database to
determine which events are part of which others. But then we had a key insight: exploit
the nested time intervals in the data logged by our tutor – and probably by many others too.

If events A and B have the same student and computer, when is A an ancestor of B?
We initially required that A contain all of B. But we relaxed the criterion to better handle
occasional overlapping intervals in our data. We therefore define A as an ancestor of B if B
starts during A. Thus a word’s ancestors include an utterance, sentence, story, and session.

The tool computes the event tree by partial-ordering the events according to the
ancestor relation. The parent of an event is defined as its minimal ancestor. Siblings are
defined as sharing the same parent; they are ordered by their start times.
 The companion paper [1] shows how the tool displays such trees, summarizes events
in readable form, and lets users dynamically drill down and adjust which details to display.

4. Require minimal effort to adapt the tool to new versions, new users, or other tutors.

How can the tool obtain the information it needs about a database of tutor interactions? Its
generic architecture enables it to make do with readily available meta-data, a few assumed
conventions, and a little code. MySQL provides the required meta-data, namely the list of
tables in the database, the fields in each table and event list, and their names and data types.
We exploit the observation (or assumption) that the meaning of field names is consistent
across database tables and over time. The code assumes particular field names for student,
machine, and start and end times, but overrides this convention when necessary, as in the
case of a particular table with a “Time” field instead of a “Start_time” field.

 The method to compute the context of a selected target event is: First, extract its
student, computer, and start time. Then query every table of the database for records for the
same student and computer whose time interval contains the start of the target event.
Finally, sort the retrieved records according to the ancestor relation, and display them
accordingly by inserting them at appropriate positions in a Java™ expandable tree widget.

The method to find the children of a given event fires only when needed to expand
the event node. It finds descendants in much the same way as the method to find ancestors,
but then winnows them down to the children (those that are not descendants of others).
Both methods work whether the events are in the same table or in different tables.

A more knowledge-based method would know which types of Reading Tutor events
can be parents of which others. However, this knowledge would be tutor- and possibly
version-specific. In contrast, our brute force solution of querying all tables requires no such
knowledge. Moreover, its extra computation is not a problem in practice. Our databases
consist of a few dozen tables, the largest of which have tens of millions of records. Despite
this table size, the tool typically computes the context of an event with little or no delay.

5. Conclusion

This paper reports an implemented, efficient, generic solution to a major emerging problem
in educational data mining: efficient exploration of vast student-tutor interaction logs. We
describe three useful requirements for such exploration that an earlier tool [5] failed to
meet, and how the new tool meets them: let the user specify which phenomenon to explore;
explore selected events and the context in which they occurred; and require minimal effort to
adapt the tool to new versions, to new users, or to other tutors. Our key conceptual
contribution uses temporal relations to expose natural hierarchical structure. This is the
sense in which “time will tell” many basic relationships among tutorial events.

The success of this approach suggests specific recommendations in designing
databases of tutorial interactions: Log each distinct type of tutorial event in its own table.
Include student ID, computer, start time, and end time as fields of each such table so as to
identify its records as events. Name these fields consistently within and across databases
created by successive versions of the tutor so as to make them easier to extract.

The ultimate test of this tool is whether it leads to useful discoveries, or at least
sufficiently facilitates the process of educational data mining that the miners find it helpful
and keep using it. To repeat our subtitle in its more usual sense, “time will tell!”

Acknowledgements: This work was supported in part by the National Science Foundation under ITR/IERI
Grant No. REC-0326153. Any opinions, findings, conclusions, or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views of the National Science
Foundation or the official policies, either expressed or implied, of the sponsors or of the United States
Government. We thank the educators and students who generated our data.

References (see www.cs.cmu.edu/~listen)

1. Mostow, J., J. Beck, H. Cen, E. Gouvea, and C. Heiner. Interactive Demonstration of a Generic Tool
to Browse Tutor-Student Interactions. Supplemental Proceedings of the 12th International
Conference on Artificial Intelligence in Education (AIED 2005) 2005. Amsterdam.

2. Mostow, J., G. Aist, P. Burkhead, A. Corbett, A. Cuneo, S. Eitelman, C. Huang, B. Junker, M.B.
Sklar, and B. Tobin. Evaluation of an automated Reading Tutor that listens: Comparison to human
tutoring and classroom instruction. Journal of Educational Computing Research, 2003. 29(1): p. 61-
117.

3. MySQL. Online MySQL Documentation. 2004.
4. Beck, J., ed. Proceedings of the ITS2004 Workshop on Analyzing Student-Tutor Interaction Logs to

Improve Educational Outcomes. 2004: Maceio, Brazil.
5. Mostow, J., J. Beck, R. Chalasani, A. Cuneo, and P. Jia. Viewing and Analyzing Multimodal

Human-computer Tutorial Dialogue: A Database Approach. Proceedings of the ITS 2002 Workshop
on Empirical Methods for Tutorial Dialogue Systems, 75-84. 2002. San Sebastian, Spain.

http://www.cs.cmu.edu/~listen

	Introduction
	Specify which phenomenon to explore.
	Explore selected events and the context in which they occurr
	Require minimal effort to adapt the tool to new versions, ne
	Conclusion

