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ABSTRACT

Sphinx-4 is an open source HMM-based speech recognition sys-
tem written in the Java™ programming language. The design of
the Sphinx-4 decoder incorporates several new features in
response to current demands on HMM-based large vocabulary
systems. Some new design aspects include graph construction for
multilevel parallel decoding with multiple feature streams without
the use of compound HMMs, the incorporation of a generalized
search algorithm that subsumes Viterbi decoding as a special case,
token stack decoding for efficient maintenance of multiple paths
during search, design of a generalized language HMM graph from
grammars and language models of multiple standard formats, that
can potentially toggle between flat search structure, tree search
structure, efc. This paper describes a few of these design aspects,
and reports some preliminary performance measures for speed
and accuracy.

1. INTRODUCTION

Sphinx-4 is a state-of-art HMM-based speech recognition system
being developed on open source (cmusphinx.sourceforge.net)
since February 2002. It is the latest addition to Carnegie Mellon
University’s repository of Sphinx speech recognition systems.
The Sphinx-4 decoder has been designed jointly by researchers
from CMU, Sun Microsystems Laboratories and Mitsubishi Elec-
tric Research Laboratories. Over the past few years, the demands
placed on conventional recognition systems have increased signif-
icantly. Several functionalities are now additionally desired of a
system, such as the ability to perform multistream decoding in a
theoretically correct manner, with as much user control on the
level of combination as possible, that of at least some degree of
basic easy control over the system’s performance in the presence
of varied and unexpected environmental noise levels and types,
portability across a growing number of computational platforms,
conformance to widely varying resource requirements, easy
restructuring of the architecture for distributed processing etc. The
importance of good and flexible user interfaces is also clear as
speech recognition is increasingly used by non-experts in diverse
applications. The design of Sphinx-4 is driven by almost all of
these considerations, resulting in a system that is highly modular,
portable and easily extensible. Many new features have been
incorporated by extending conventional design strategies or
implementing new ones. The design is more utilitarian and futur-
istic than most existing HMM-based systems.

This paper describes a selected set of important design innova-
tions in the Sphinx-4 decoder. The sections are arranged as fol-
lows: Section 2 describes the overall architecture of the decoder,
and some software aspects. Section 3 describes the design of the
graph construction module for decoding with single and multiple
parallel feature streams. Section 4 describes the design of the
search module, and the generalized classification algorithm used

in it. Section 5 describes the design of the frontend and acoustic
scorer. Section 6 gives some performance measures.

2. OVERALL ARCHITECTURE

The Sphinx-4 architecture has been designed with a high degree
of modularity. Figure 1 shows the overall architecture of the sys-
tem. Even within each module shown in Figure 1, the code is
extremely modular with easily replaceable functions.
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Figure 1. Architecture of the Sphinx-4 system. The main blocks are
Frontend, Decoder and Knowledge base. Except for the blocks within
the KB, all other blocks are independently replaceable software mod-
ules written in the Java™ programming language. Stacked blocks
indicate multiple types which can be used simultaneously.

There are three main blocks in the design: the frontend, the
decoder, and the knowledge base (KB). These are controllable by
an external application. The frontend module takes in speech and
parametrizes it. Within it, the endpointer module can either per-
form endpointing on the speech signal, or on the sequence of fea-
ture vectors computed from it. The decoder block performs the
actual recognition. It comprises a graph construction module,
which translates any type of standard language model provided to
the KB by the application into an internal format, and together
with information from the dictionary, and structural information
from one or more sets of acoustic models, constructs a Language
HMM. The latter is then used by the search module to determine
the structure of the trellis to be searched. The trellis is not explic-
itly constructed. Rather, it is an implicit entity as in conventional
decoders. Search is performed by token passing [2]. The applica-
tion can tap the information in the tokens to get search results at
various levels (such as state, phone or word-level lattices and seg-
mentations). When multiple feature streams are used for recogni-
tion, the application can also control the level at which scores
from the parallel streams are combined during search, and how
each information stream is pruned. The search module requires
state output probability values for each feature vector in order to
determine the scores of state sequences. State output probabilities
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Figure 2. (a) Word graph for a simple language with a two word
vocabulary. (b) Phonetic graph derived from (a). (c) Language HMM
derived from (b). (d) Trellis formed as the crossproduct of (c) and a
linear graph of observation data vectors.

are computed by the state probability computation module, which
is the only module that has access to the feature vectors. Score
computation is thus an on-demand task, carried out whenever the
search module communicates a state identity to the scoring mod-
ule, for which a score for the current feature (of a specific type) is
desired. In Sphinx-4, the graph construction module is called the
linguist, and the score computation module is called the acoustic
scorer. The system permits the use of any level of context in the
definition of the basic sound units. The modular design also favors
any future hardware implementation.

Programming language: The system is entirely developed on the
Java™ platform which is highly portable: once compiled, the
bytecode can be used on any system that supports the Java plat-
form. This feature permits a high degree of decoupling between
all modules. Each module can be exchanged for another without
requiring any modification of the other modules. The particular
modules to be used can be specified at run time through a com-
mand line argument, with no need to recompile the code. The gar-
bage collection (GC) feature of the Java platform simplifies
memory management greatly; memory management is no longer
done through explicit code. When a structure is no longer needed,
the program simply stops referring to it. The GC frees all relevant
memory blocks automatically. The Java platform also provides a
standard manner of writing multithreaded applications to easily
take advantage of hyper-threaded processors and multi-processor
machines. In addition, the Javadoc™ tool automatically extracts
information from comments in the code and creates html files that
provide documentation about the software interface.

3. GRAPH CONSTRUCTION MODULE

In an HMM-based decoder, search is performed through a trellis: a
directed acyclic graph (DAG) which is the cross product of the
language HMM and time. The language HMM is a directed graph,
in which any path from source to sink represents the HMM for a
valid word sequence in the given language. Language probabili-
ties are applied at transitions between words. The language HMM
graph is a composition of the language structure as represented by
a given language model and the topological structure of the acous-
tic models (HMMs for the basic sound units used by the system).
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Figure 3. Graph construction with two parallel features.In the left
panel scores for words are combined at word boundaries. In the right
panel, they are combined at phoneme boundaries.

Figure 2 shows examples of a language HMM, the trellis which is
based on it and searched, and the intermediate level graphs which
are used implicitly in the composition of the language HMM.

The graph construction module in Sphinx-4, i.e. the linguist, has
two submodules. The first interprets the language model provided
by the application as a part of the KB, and converts it into an inter-
nal grammar. This permits the external language model provided
by the application to have any structure, such as statistical N-
gram, context free grammar (CFG), finite state grammar (FSG),
finite state transducer (FST), simple word list etc. For FSGs and
FSTs, the internal grammar is a literal translation of the external
representation. The internal grammar representation of word lists
links a single source node to all words, and has edges from the
outputs of words to a common sink node. A loopback is made
from the sink to the source. For N-gram LMs, a fully-connected
structure is formed where every word is represented by a node,
and there are explicit links from every node to every other node.

The internal grammar is then converted to a language HMM by
the second submodule, which is independent of the grammar con-
struction module. Note that in the architecture diagram both mod-
ules are represented by a single graph construction module. In
forming the language HMM, the word-level network of the inter-
nal grammar is expanded using the dictionary and the structural
information from the acoustic models. In this graph, sub-word
units with contexts of arbitrary length can be incorporated, if pro-
vided. We assume, however, that silence terminates any context -
sub-word units that are separated from each other by an intermedi-
ate silence context cannot affect each other. The acoustic models
for the sub-word units are incorporated into the final language
HMM.

The word graph can be converted to a language HMM either
dynamically or statically. In dynamic construction, word HMMs
are constructed on demand - when the search reaches the terminal
state for a word, the HMMs for words that can follow it are con-
structed if they have not already been instantiated. During con-
struction, appropriate context dependent sub-word units are used
at the word boundaries. In static construction, the entire language
HMM is constructed statically. HMMs are constructed for all
words in the vocabulary. Each word HMM is composed with sev-
eral word-beginning and word-ending context dependent phones,
each corresponding to a possible crossword context. Each word is
connected to every other word by linking appropriate context-
dependent crossword units.

The manner in which the language HMM is constructed affects
the search. The topology of the language HMM affects the mem-
ory footprint, speed and recognition accuracy. The modularized
design of Sphinx-4 allows different language HMM compilation
strategies to be used without changing other aspects of the search.
The choice between static and dynamic construction of language
HMMs depends mainly on the vocabulary size, language model
complexity and desired memory footprint of the system, and can



be made by the application.

The language HMM accommodates parallel feature streams as
shown in Figure 3. The design does not use compound HMMs [3]
as in conventional systems, but maintains separate HMMs for the
individual feature streams. The HMMs for the individual streams
are tied at the level at which the application requires unit scores to
be combined. Time-synchronization of paths is ensured at the
boundaries of combined units, during search.

4. SEARCH MODULE

Search in Sphinx-4 can be performed using the conventional Vit-
erbi algorithm, or a more general algorithm called Bushderby [1],
which performs classification based on free energy, rather than
likelihoods. Likelihoods are used in the computation of free
energy, but do not constitute the main objective function used for
classification. The theoretical motivations for this algorithm are
described in [1]. From an engineering perspective, this amounts to
the application of different logic at different nodes in the language
HMM. At non-emitting nodes between words, only the score of
the best incoming path is retained. At every other node U, a free-
energy term, computed from the scores of the set © of all incom-
ing edges incident on U, is derived as the following 1/7 norm:

T
score(U) = (Zscore(ﬂ:)Tj )

When T = 1, this computes the sum of all incoming scores. At
T = 0, score(U) is merely the highest of incoming scores. Thus
the search collapses to Viterbi decoding at 7 = 0. Classification
for mismatched data can directly be controlled through the Bush-
derby parameter 7', and has been shown to yield significant
improvements in recognition performance as compared to the Vit-
erbi algorithm.

Both Viterbi and Bushderby decoding are performed using a token
passing algorithm [2]. A token is an object that is associated with
a state and contains the overall acoustic and language scores of the
path at a given point, a language HMM reference, a reference to
an input feature vector, and other relevant information. The lan-
guage HMM reference allows the search module to relate a token
to its state output distribution, context-dependent phonetic unit,
pronunciation, word, and grammar state. Every partial hypothesis
terminates in an active token. At each time step, a subset of these
tokens form an active list. Each token in the active list generates
new tokens that are propagated to successor states. Active lists are
selected from currently active nodes in the trellis through pruning.
Sphinx-4 performs both relative and absolute pruning, and also
pruning for individual features when decoding with parallel fea-
ture streams. All pruning thresholds are controllable by the appli-
cation. The GC automatically reclaims unused tokens, thus
simplifying the implementation of the pruner, in that the module
can simply stop referring to tokens that are not in the active list.
The search module communicates with the state probability esti-
mation module, also called the acoustic scorer, to obtain acoustic
scores for the current data. Data are only seen by the acoustic
scorer.

Search can be performed in either depth-first or breadth-first man-
ner. Depth-first search is similar to conventional stack decoding,
where the most promising tokens are propagated through time
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Figure 4. The pruning problem encountered by the search module in
decoding parallel feature streams. If pruning is based on combined
scores, paths with different contributions from the multiple feature
streams get compared for pruning.

sequentially. Thus, partial hypotheses can be of varying lengths. In
breadth-first search, all active tokens are expanded synchronously,
making all partial hypotheses equal in length. The Bushderby
algorithm applies only to breadth-first search. For Viterbi decod-
ing, when multiple tokens arrive at a state, only the best token is
retained. When Bushderby decoding is being performed, however,
multiple tokens at emitting states are merged into a single token.

For decoding with parallel feature streams, timing considerations
become important. It is necessary to ensure that the paths from the
multiple feature streams that are combined enter and exit the units
across which they are combined at the same time. The units may
be states, phonemes or words. This is because Sphinx-4 uses a fac-
tored language HMM for the multiple streams, as shown in Figure
3. This becomes extremely difficult to ensure with conventional
Viterbi decoding, where only a single path is retained at any state.
It becomes impossible to ensure that the paths that survive through
the factored HMMs have compatible timings. To resolve this
problem, the search modules maintains token stacks, keeping mul-
tiple tokens at each state. This permits multiple paths to survive
through any state.

A second problem with factored implementation of multiple fea-
tures streams is that of pruning. It is inappropriate to perform
pruning based on total path scores alone, since this leads to unbal-
anced scores. The problem is depicted in Figure 4. To avoid this
problem, pruning is done at two levels. Within the states of the
HMM for any feature, pruning is performed based only on the
total score for that feature, without incorporating the contributions
of other features. The beams used for this pruning are typically
very wide. At the non-emitting nodes where feature scores are
combined, pruning is performed based on the combined scores.
This pruning uses much narrower beams. Also, feature scores are
combined in a weighted manner as follows:

score(U) = Hscore@‘eat)w/“' )

feat

The weights Wieqr €N be controlled directly by the application or
through any application-enforced learning algorithm.

The result generated by the search module is in the form of a token
tree, which can be queried for the best recognition hypotheses, or
a set of hypotheses. The tree does not encode the entire recogni-
tion lattice. To derive lattices, a secondary table must maintain
pointers to word-ending tokens that were pruned.



5. FRONT END AND ACOUSTIC SCORER

Front end: The front end module of Sphinx-4 is parallelizable,
and can currently simultaneously compute MFCC and PLP cep-
stra from speech signals, with easy extensibility to other feature
types. The module is organized as a sequence of independent
replaceable communicating submodules, each with an input and
output that can be tapped. Thus outputs of intermediate submod-
ules can be easily fed into the state computation module, for
example. Features computed using independent sources by the
application, such as visual features, can also be directly fed into
the acoustic scorer, either in parallel with the features computed
by the frontend, or independently. Moreover, one can easily add
new submodules between two existing ones. It would thus be very
easy to add a specific noise cancellation module to the front end.

The communication between blocks follows a pull design. In this
design, a module requests input from an earlier module when
needed, as opposed to the more conventional push design, where a
module propagates its output to the succeeding module as soon as
it is generated. At a global level, in a pull design, speech is pro-
cessed only when recognition is requested. In a push design, rec-
ognition is requested after speech is captured. Each module
operates in response to control signals which are interpreted from
the data requested from the predecessor. The control signal might
indicate the beginning or end of speech, data dropped, etc. If the
incoming data are speech, they are processed and the output is
buffered, waiting for the successor module to request it. Handling
of control signals such as start or end of speech are essential for
livemode operation. This design allows the system to be used in
live or batchmode without modification.

In addition to being responsive to a continuous stream of input
speech, the frontend is capable of three other modes of operation:
(a) fully endpointed, in which explicit beginning and end points of
a speech signal are sensed (b) click-to-talk, in which the user indi-
cates the beginning of a speech segment, but the system deter-
mines when it ends, (c) push-to-talk, in which the user indicates
both the beginning and the end of a speech segment. Currently,
endpoint detection is performed by a simple algorithm that com-
pares the energy level to three threshold levels. Two of these are
used to determine start of speech, and one for end of speech.

Acoustic scorer: The acoustic scorer provides state output density
values on demand. When the search module requests a score for a
given state at a given time, it accesses the feature vector for that
time and performs the mathematical operations to compute the
score. It matches the acoustic model set to be used against the fea-
ture type in case of parallel decoding with parallel acoustic mod-
els. There are no restrictions on the allowed topology for the
HMMs used in parallel scoring. The scorer retains all information
pertaining to the state output densities. Thus, the search module
need not know the scoring is done with continuous, semi-continu-
ous or discrete HMMs. Any heuristic algorithms incorporated into
the scoring procedure for speeding it up can be performed locally
within the scorer.

6. EXPERIMENTAL EVALUATION

The performance of Sphinx-4 is compared with Sphinx-3 on the
on the speaker independent portion of the Resource Management
database (RM1) [4] in Table 1. Sphinx-3 builds most of the lan-

guage HMM dynamically, whereas the experiments reported with
Sphinx-4 utilize static language HMM construction. Since the two
operations are fundamentally different, language HMM construc-
tion times have been factored out of the real-time numbers
reported in Table 1. Acoustic models were 3 state, 8 Gaussians/
state HMMs with 1800 tied states, trained with the RM1 training
data using the training module of Sphinx-3. Test results are
reported using the following statistical N-gram language models:
a flat unigram, a unigram, and a bigram. The LMs were created
from the LM training data provided with the RM1 database.
Sphinx-4 is currently also capable of working from an external
FST language model. Although the results with FSTs are consis-
tently better than those with N-gram LMs, we do not report them
here, since comparisons with Sphinx-3 are not possible. Table 1
shows both word error rate (WER) and decoding speed (in times
real time). All experiments were run on a 1.7GHz Pentium-4 pro-
cessor running Linux RedHat 7.1, using Java™ 2 Platform, Stan-
dard Edition (J2SE™) v. 1.4.1 01 SDK.

Speed (xRT) | WER (%)

Type of N-gram LM S3 S4 S3 S4
Flat unigram 1.2 48 | 187 1193
Unigram 1.1 55 | 13.1 | 145
Bigram 1.1 6.0 1.9 33

Table 1: Performance of Sphinx-3 (S3) and Sphinx-4 (S4) on RM1. The
speeds do not include loading time, which are different for S3 (dynamic
language HMM construction) and S4 (currently static language HMM
construction). Sphinx-4 has not been optimized for speed or accuracy.

Sphinx-4 performance has not been optimized on the bigram and
trigram tasks at the time of this submission. The evaluation of
medium vocabulary tasks is ongoing, and large vocabulary tasks
will be approached shortly. The optimized bigram and trigram
tasks, and the completed medium and large vocabulary evalua-
tions will be reported by the time the paper is presented. They will
also be reported on SourceForge as and when they are completed.
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