
ABSTRACT

Speaker-dependent automatic speech recognition systems are
known to outperform speaker-independent systems when
enough training data are available to model acoustical variabil-
ity among speakers. Speaker normalization techniques modify
the spectral representation of incoming speech waveforms in an
attempt to reduce variability between speakers. Recent success-
ful speaker normalization algorithms have incorporated a
speaker-specific frequency warping to the initial signal process-
ing stages. These algorithms, however, do not make extensive
use of acoustic features contained in the incoming speech.

In this paper we study the possible benefits of the use of acous-
tic features in speaker normalization algorithms using fre-
quency warping. We study the extent to which the use of such
features, including specifically the use of formant frequencies,
can improve recognition accuracy and reduce computational
complexity for speaker normalization. We examine the charac-
teristics and limitations of several types of feature sets and
warping functions as we compare their performance relative to
existing algorithms.

1. INTRODUCTION
In recent years nonlinear frequency normalization has become a
popular approach for reducing the effects of systematic varia-
tions of vocal tract anatomy on   speech recognition accuracy.
Typically frequency normalization involves the use of a “warp-
ing function” which is intended to characterize a mapping of the
average spectra of two speakers (or between a given speaker
and a “standard” speaker). Two key issues that distinguish the
various frequency warping are the shape of the warping func-
tions used and the method by which they are selected. For
example, linear warping functions have been chosen by many
research groups, in part because of their simplicity. Other com-
mon choices are curves based on speech perception studies,
such as the bilinear transform or transforms based on the mel
scale, along with curves based on speech production models.
The selection of warping function is sometimes accomplished
by choosing from a set of candidate functions in a fashion that
maximizes the likelihood of the observations, and sometimes
based directly on speaker-specific speech parameters.

In a relatively early study, Acero blindly estimated the optimal
frequency-distortion parameter for the bilinear transform used
to accomplish frequency warping for LPC-derived cepstra [1,
2]. This technique produced a 12 percent decrease in the rela-
tive error rate on the CMU speaker-independent alphanumeric
census task.

Much of the current activity in speaker normalization was moti-
vated by the results of Cohenet al. [3], who used a set of linear
frequency warping functions. They chose specific warping
functions by training HMMs on half the data using the current
warping function and applying the decoder to the other half.

The warping function was chosen by iteratively searching for
the function that maximized the likelihood of the decoder out-
put, interchanging the roles of the two subsets of data during
each iteration.

Wegmannet al. [9] described a less computationally-intensive
approach. They used a Gaussian mixture model to represent
the features of the standard speaker, and a piecewise-linear
warping function was chosen to maximize the likelihood of
these features (rather than the likelihood of the decoder out-
put).

Lee and Rose [7] proposed a technique that combines some of
the better features of the   techniques of Cohenet al.and Weg-
mannet al. They choose the best warping function for speakers
in the training set using HMMs and, after an iterative process,
estimate a Gaussian mixture model which will be used to select
the warping function for speakers in the test set.

A completely different approach was adopted by Eide and
Gish [5]. They estimated a parameter based on the third for-

mant for each speaker and used as the warping function

(1)

Zhan and Westphal [10] described extensions of the algorithms
proposed by Lee and Rose and by Eide and Gish. They
reported results using a piecewise-linear warping function, as
well as a function similar to Eq. (1). For both linear and nonlin-
ear warping functions they found the appropriate constants
using two methods: they computed the constants directly from
each of the three first formants, applied separately (in a fashion
similar to Eide and Gish), or they searched a range of values
and chose the best one by maximizing of likelihoods (similar
to Lee and Rose).

None of the above approaches makes extensive use of acoustic
features. In this paper, we explore the use of frequency warp-
ing techniques that are based more directly on the observed
values of ensembles of acoustic features. Specifically, we
examine the performance of frequency warping functions
based on the first three formant frequencies. In general, we
compile histograms of formant frequencies from speech from a
particular speaker in the test set, and we use features such as
the median, maximum, or minimum of each formant frequency
to derive the warping function.

In Section 2, we outline the basic postulates of this approach.
In Section 3, we describe the results of several pilot experi-
ments that demonstrate the algorithm’s effectiveness and that
compare its performance to other normalization procedures in
terms of recognition accuracy and computational requirements.
In Section 4 we describe several generalizations of the algo-
rithm that use different warping function shapes or different
feature sets.
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2. DESCRIPTION OF THE ALGORITHM
The two most important issues to be resolved in nonlinear fre-
quency warping concern the general shape of the warping func-
tion and how its specific form is obtained. As noted above, we
select the warping function based on points extracted from
acoustic features, specifically distributions of formant frequen-
cies, on a speaker-by-speaker basis. The specific warping func-
tion is obtained by comparing the values of these features
obtained for a specific speaker with the corresponding feature
values averaged over all speakers in the training set.

Figure 1 shows an example of a warping function obtained in
this fashion from three hypothetical formant-based features.
The ordinate of each of the three points is a statistical parameter
computed from the histograms of the three formants from a par-
ticular speaker. The abscissa represents the same statistical fea-
ture values from the “standard speaker”, which is obtained by
computing the means of the features used over all speakers in
the training set. A warping function is fitted to these three
points, which in this case is assumed to be linear. Since we use
a sampling frequency of 16 kHz in our work, the maximum fre-
quency shown, 8 kHz, is the Nyquist frequency.

3. PERFORMANCE OF FORMANT-BASED
FREQUENCY NORMALIZATION

In this section we describe the results of several experiments
which demonstrate the performance of formant-based fre-
quency normalization and compare it to other approaches. We
use the medians of the three formant frequencies as features,
and a linear warping function that is not constrained to include
the origin for the experiments described in this section. In Sec-
tion 4 below, we describe the results of some pilot experiments
in which we consider a more general set of warping functions
and features.

3.1.  Distribution of Slopes of Linear Warping
Functions According to Gender

Since females usually have vocal tracts with smaller dimension
than males, a female’s formant frequencies are usually higher
than a male’s. We would expect that a reasonable warping func-
tion would cause a female’s formants to become compressed in
the process, while a male’s formants would be expanded, so that
the warped frequencies are closer together. Compression can be
achieved by a warping function that is a straight line with a
slope greater than one, and expansion, with a slope that is less
than one.

To confirm this expectation we calculated a series of speaker-
specific linear warping functions as described in the previous
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Figure  1. Example of warping function based on linear fit to
points extracted from formants.

section and plotted histograms of their slopes, separated by gen-
der. Figure 2 shows these results. We note that the clusters sepa-
rate well by genders, and that the dependence of slope on
gender is as expected.

3.2.  Effect of Normalization on Formant Clusters

We also examined the extent to which the frequency normaliza-
tion process reduces the variability of formant frequencies
across all speakers. Figure 3 represents a replotting of the data
collected by Peterson and Barney [8], who estimated formant
frequencies from vowels uttered by approximately sixty speak-
ers, each speaker repeating each of ten vowels twice. We
applied our frequency normalization algorithm to the Peterson-
Barney data, and plotted points in the formants planes, before
normalization and after normalization. For clarity’s sake, we
plot just three of the ten vowels considered in Figure 3, and only
data from 31 speakers. The three vowels plotted establish the
vertices of the “vowel triangle” proposed by Peterson and Bar-
ney.

The Fisher ratio, which is the ratio between the variance of the
means divided by the means of the variances across several dif-
ferent clusters, is a commonly-used measure of cluster separa-
tion relative to intrinsic cluster variability. The Fisher ratio for
the clusters of data replotted in Figure 3 is 12 before normaliza-
tion and increases to 29 after normalization. Hence, from a pat-
tern recognition perspective, the transformation is making the
classes more compact and farther apart, which would provide
greater classification accuracy.

3.3.  Effect of Frequency Normalization on
Recognition Accuracy

To verify that frequency normalization is effective, we ran a
series of recognition experiments using the linear warping func-
tion and the median values of the first three formants as fea-
tures. The results were obtained using the speaker independent
portion of the Resource Management database (RM1). The
training set has 120 speakers, including 85 males and 35
females. The test set has 40 speakers, 23 males and 17 females.
Training and testing were performed using SPHINX-III, which
is a continuous HMM system, with output probability distribu-
tions consisting of 2-component Gaussian mixtures.

Table 1 summarizes our results, comparing recognition accu-
racy using formant-based frequency normalization with a local
implementations of the algorithm proposed by Wegmannet al.
[9] that was used by CMU in the 1995 ARPA Hub 3 continuous
speech recognition evaluation. Our implementation of the algo-
rithm of Wegmannet al. is described in [6], and it differs in the
shape of the warping function from the original implementation
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Figure  2. Distributions of slopes of linear warping functions
based on best fit through median formant frequencies accord-
ing to gender.



proposed by Wegmannet al. [9]. As can be seen in Table 1, the
use of formant-based frequency warping produced a greater
reduction in word error rate for this dataset than our implemen-
tation of the algorithm proposed by Wegmannet al.

3.4.  Computational complexity

In the recognition results presented in the previous section, we
estimated medians of formants for each speaker using all 40
sentences in the data. Figure 4 describes how recognition accu-
racy is affected by the number of sentences used to estimate the
median formants. As can be seen, 5 sentences appear to be ade-
quate.

Table 2 describes the computational time required to enroll a
new speaker to the system using a Hewlett-Packard HP-720
workstation. 15 sentences from each speaker were used for both
the formant-based normalization and our implementation of the
method of Wegmannet al.The formant-based frequency warp-
ing is faster as well as more accurate.

IY
IY
IYIYIYIYIYIY

IY
IY
IY
IYIYIYIYIYIYIYIY

IYIYIYIYIY
IYIYIYIY
IYIY
IY

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

AA
AAAAAAAAAAAAAAAA

UW
UW

UW
UWUW

UW
UW
UWUW
UW
UW
UW
UW
UWUWUW
UWUWUWUW
UWUW
UW
UWUW
UWUWUW
UWUW
UW

F1 (kHz)
0.2 0.4 0.6 0.8 1.0 1.2

F
2 

(k
H

z)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

IY

IY

IY

IY
IYIYIYIYIY

IY

IY
IY
IY
IY

IY
IY

IY

IY
IY

IY

IY
IY
IYIY
IY
IY
IY
IYIY

IYIY

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA
AAAA
AAAA

AAAAAAAA
UW
UW
UW
UW
UW
UWUW
UWUWUWUWUWUW

UW
UWUW
UW
UWUWUWUWUWUWUW

UWUWUWUW
UW
UWUW

F1 (kHz)
0.2 0.4 0.6 0.8 1.0 1.2

F
2 

(k
H

z)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

Before Frequency Warping:

After Frequency Warping:

Figure  3. Formants of the phonemes /AA/, /IY/, and /UW/
before normalization (upper panel) and after normalization
(lower panel). Data collected by Peterson and Barney [8].

Method
Error
Rate

Improvement

Baseline
(No Normalization)

6.6% –

Frequency Warping
Based on Wegmann et al.

6.3% 4.5%

Formant-Based
Frequency Warping

5.8% 12%

Table  1. Comparison of word error rate using formant-
based frequency warping with own implementation of the
algorithm of Wegmannet al.

3.5.  Robustness to Additive Noise

Additive noise can affect the performance of formant-based fre-
quency warping, both by degrading the quality of the feature
estimates and by degrading the ability to estimate formant fre-
quencies. We observed the effect of noise on performance by
artificially adding white Gaussian noise at different signal-to-
noise ratios (SNRs) to speech from the speaker-independent
RM1 sentences, and then estimating formants and recognizing
as before.

Table 3 describes word error rate for several SNRs, before and
after normalization. Formant-based frequency warping consis-
tently provides better word error rates at all SNRs considered,
with greatest percentage improvement at high SNRs.

4. GENERALIZATIONS OF
THE ALGORITHM

The results presented in the previous section show that formant-
based frequency warping using a linear warping function and
the medians of the first three formants as features can achieve
the same or better recognition accuracy at lower computational
cost than the similar algorithms to which it was compared. In
this section we briefly summarize some results obtained using a
more general class of warping function shapes and a more gen-
eral class of features.
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Figure  4. Word error rate as a function of the number of
sentences used to estimate medians of formants for speak-
ers in the test set.

Method Error
Rate

Enrollment
Time

Formant-Based
Frequency Warping

5.9% 175 s

Frequency Warping
Based on Wegmannet al.

6.3% 251 s

Table  2. Comparison of enrollment times using formant-
based frequency warping and our implementation of the
method of Wegmann et al. 15 enrollment sentences were used.

SNR 5 dB 10 dB 20 dB 40 dB

No Warping 89.1 71.0 23.8 6.6

Formant-Based
Warping

89.0 69.1 20.3 5.8

Table  3. Word error rates for speech with additive noise at
several SNRs.



4.1.  Warping Functions from Normal Deviate
Transformations

A wider variety of potential warping functions could be
obtained by considering the shapes of typical Receiver Operat-
ing Characteristics (ROC or “isosensitivity” curves), which are
plots of detection versus false alarm probabilities (e.g. [4]). If
the underlying statistics of the received signal in a communica-
tions system are Gaussian, these ROC curves become linear
when the probabilities are replaced by their corresponding “nor-
mal deviates”. The normal deviate of a probability  is
defined implicitly as

(2)

We obtained a more general set of formant-based warping func-
tions by first normalizing formant frequencies by dividing them
by the Nyquist frequency. We then applied the normal deviate
transformation (Eq. 2) to the normalized frequencies (which
now had values between 0 and 1), determined the best-fit
straight line in the -domain, and computed the inverse normal
deviate transformation (i.e. the Gaussian error function) of the
values of  defined by the resulting curve.

The use of warping functions derived from best-fit straight lines
in the normal deviate domain reduced the word error rate on the
RM1 data from 5.8% to 5.6%, which increased the percentage
improvement relative to the baseline from 12% to 15%. Some
individual speakers obtained lower error rates using warping
functions that were linear in the original frequency domain,
while others obtained better results with warping functions
obtained using the normal deviate transform. While selection of
the better-performing warping function for each speaker would
have reduced the error rate to 5.3% (a 20% reduction relative to
the baseline), we could not identify a way to do so blindly.

Figure 5 illustrates warping functions obtained using the origi-
nal linear and the newer normal deviate approach for Speaker
CEG in the RM1 database. As can be seen, the two curves are
similar for lower frequencies but they diverge at higher frequen-
cies.

4.2.  Use of Additional Features

We also explored the use of other statistical parameters
extracted from formant frequency histograms. Because the
extremal formant frequencies are believed by some to be instru-
mental in defining the shape of the “vowel triangle”, we evalu-
ated the performance of warping functions obtained from
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Figure  5. Comparison of warping functions obtained using
the linear and normal-deviate approaches for a speaker in the
RM1 database

features consisting of the 5th and 95th percentiles of each of the
first three formant frequencies (rather than the median or 50th

percentile). We considered both the linear and the normal-devi-
ate-based warping functions. Nevertheless, we obtained error
rates that were worse than the baseline in each case considered.

5. CONCLUSIONS
This paper presents a new approach to speaker normalization
that takes advantage of the medians of the first three formant
frequencies to find a suitable nonlinear frequency warping func-
tion. Our pilot results indicate that the proposed method pro-
vides error rates that are slightly lower than other existing
approaches, and with reduced computational requirements.
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