
ABSTRACT

In this paper we introduce a new family of environmental com-
pensation algorithms called Multivariate Gaussian Based Cepstral
Normalization (RATZ). RATZ assumes that the effects of
unknown noise and filtering on speech features can be compen-
sated by corrections to the mean and variance of components of
Gaussian mixtures, and an efficient procedure for estimating the
correction factors is provided. The RATZ algorithm can be imple-
mented to work with or without the use of “stereo” development
data that had been simultaneously recorded in the training and
testing environments. “Blind” RATZ partially overcomes the loss
of information that would have been provided by stereo training
through the use of a more accurate description of how noisy envi-
ronments affect clean speech.   We evaluate the performance of
the two RATZ algorithms using the CMU SPHINX-II system on
the alphanumeric census database and compare their performance
with that of previous environmental-robustness developed at
CMU.

1. INTRODUCTION
As speech recognition systems become more accurate and sophis-
ticated, robustness with respect to noise, channel effects, and other
perturbations caused by the acoustical environment becomes
increasingly important. Over the past few years, researchers at
CMU and other sites have developed a series of techniques to
address this problem (e.g.[1,2,3,4]). These techniques can be clas-
sified into two broad groups, data-driven techniques such as multi-
ple fixed codeword-dependent cepstral normalization (MFCDCN)
[2] and model based techniques such as the original codeword-
dependent cepstral normalization algorithm (CDCN) [1]. The
data-driven algorithms make few assumptions about the effects of
the environment on the speech cepstra. They rely on empirical
comparisons of the acoustical characteristics of speech that is
simultaneously recorded using a close-talking microphone
(CLSTLK) and in the target environment. Such databases are
commonly referred to as “stereo” data. The second class of tech-
niques assumes a particular structural model of the acoustical deg-
radation. For example, much of the work of Acero and colleagues
(e.g. [1]) assumes that degraded speech can be modeled as “clean”
speech that is corrupted by additive noise and linear filtering.
Approaches that make use of a structural model of degradation
often use maximum likelihood methods to learn the effects of the
environment. They do not require the use of stereo data.

The algorithms we propose in this paper can be looked on as a
combination of some of the best features of empirical compensa-
tion procedures like MFCDCN and approaches which use struc-
tural models of degradation like CDCN. In the initial formulation,
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the proposed methods perform compensation based on empirical
comparisons, like MFCDCN, but using the more formal represen-
tation of probability densities and the optimal estimation proce-
dures that were used in previous model based procedures like
CDCN. Nevertheless, there is no explicit model for environmental
degradation (unlike the model based approaches). We only
assume that the environment modifies some of the parameters
used to describe the feature distributions of clean speech.

Our new techniques can exploit the information provided by ste-
reo data if available. However, stereo databases are not always
easy to collect. We will demonstrate that the representational
structure of the algorithms permit nearly-optimal compensation,
even in the absence of stereo data. 

In Sec. 2 we describe the effects of environmental degradation on
the probability density functions (pdfs) of the feature vectors used
for recognition. The new algorithms are described in Sec. 3, and
they are evaluated using simulated and real speech data in Sec. 4. 

2. EFFECT OF THE ENVIRONMENT ON 
SPEECH STATISTICS

In this section we describe how even well-behaved environments,
such as those modeled by linear channels and additive stationary
noise, modify the statistics of clean speech in very unpredictable
ways. Even though we can formulate equations that analytically
describe how the pdfs of clean speech change, the solutions for
these equations are mathematically intractable. For this reason we
model the effects of the environment as changes in the parameters
of the statistics that characterize clean speech while keeping the
same distribution structure. 

For analytical purposes, we adopt the simple model of degrada-
tion proposed by Acero [1]. In this model, degraded speech is
characterized by passing clean speech through a linear channel
and contaminating the filtered output by additive stationary noise.
For simplicity, we will also assume that the feature vector is uni-
dimensional, although all conclusions developed can be easily
expanded to an arbitrary N-dimensional space such as the log
spectral domain. 

In the power spectral domain the degraded speech can be
expressed as:

(1)

where represents the power spectrum of the noisy speech,
 is the power spectrum of the clean speech,  is the

transfer function of the linear channel, and  is the power
spectrum of the additive noise. In the log-spectral domain this
relation can be expressed as:
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where  represent the logs of , ,

, and , respectively, for some particular value of ω.

Assuming knowledge of the pdf of the clean speech, , and

its mean  and variance , the effect of the degradation will

affect the mean and variance of z in the following manner:

 (4)

For simplicity we assume that x is Gaussian, and we assume that
the power spectrum of the noise and the transfer function of the
channel are known and deterministic. In this simplified special
case the new equations for the mean and variance are:

(5)

(6)

We are not aware of any analytical solutions for these equations.
In fact the distribution of z can be shown to be non Gaussian: 

(7)

Equations (5) and (6) were obtained under the unrealistic assump-
tion that  is known a priori. In practice,  must be esti-
mated, producing a random estimate for n to which we assign the
pdf . Assuming that n and x are statistically independent, the
new expression for  becomes:

(8)

Figure 1 shows the effect of the non-linear relationship between
noise, channel and the clean signal on the signal statistics. The
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Figure 1.   Effect of noise on pdfs of x and z. The curve on the 
left represents the pdf of x. The dashed curve represents the pdf 
for z that would be obtained if z were assumed to be Gaussian. 
The solid curve is the actual pdf for z, obtained using Monte 
Carlo simulations.
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curve on the left represents the pdf of x, which is assumed to have
a mean of 10.5 and a standard deviation of 6. The data were passed
through a channel of value  and contaminated with Gauss-
ian noise with mean 6 and standard deviation 0.02. The solid curve
in Figure 1 is the actual pdf for z, obtained using Monte Carlo sim-
ulations.

The dashed curve in Figure 1 describes the pdf for z that would be
obtained if z were assumed to be Gaussian. If the means of n and x
are close to one another, the Gaussian assumption tends to be inac-
curate. Nevertheless, we will adopt the Gaussian assumption
throughout this paper for the simplicity that it provides.

 Figure 2 describes the effects of corruption by noise on the vari-

ance of the degraded signal. The curves are plotted for three values
of the relation , 0, 10, and 20 dB. We note that the range of

variances of the corrupted signal is compressed as 

increases. The variance of z increases as the variance of n
increases, but it is always lower than the original variance.

We conclude that when we assume that the corrupted distributions
have a normal shape, the effects of the environment on signal sta-
tistics can be modeled by additive correction terms to:

• the mean of z, thus shifting its pdf
• the variance of z, thus compressing its pdf

In the algorithms developed in this paper the effects of noise and

filtering are modeled by corrections to  and .

3. COMPENSATION USING RATZ

In this section we describe the new compensation algorithms,
which are referred to as Multivariate-Gaussian-Based Cepstral
Normalization (RATZ). We first describe the version of RATZ that
exploits the empirical differences between clean and degraded
speech in stereo databases. We then describe how similar compen-
sation can be effected without the need for stereo training data.

3.1. RATZ using stereo databases

The implementation of RATZ that exploits the information in ste-
reo data (“stereo RATZ”) assumes that the statistics of speech can
be represented by a multivariate Gaussian mixture distribution. It
also assumes that the effects of the environment on the statistics of
clean speech can be modeled as additive compensations for mean
vectors and   covariance matrices. 

The algorithm works in three following stages which are describes
as follows:

• Estimation of the statistics of clean speech 
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Figure 2.   Effect of noise on the variance of y. The curves are 
plotted for three values of the relation , 0, 10, and 20 dB.µx µn−
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• Estimation of the statistics of noisy speech 

• Compensation of noisy speech

Estimation of the statistics of clean speech. The pdf for the fea-
tures of clean speech is modeled as a mixture of multivariate
Gaussian vectors. Under these assumptions the distribution of
clean speech can be written as:

(9)

where  represent respectively the a priori

probabilities, mean vector and covariance matrix of each multi-
variate Gaussian mixture element k. These parameters are learned
through traditional maximum likelihood methods.

Estimation of the statistics of noisy speech. The effects of the
environment on the statistics of clean speech are modeled as:

 (10)

resulting in a new set of statistics describing the noisy speech vec-
tor z. We assume that the a posteriori probabilities of the mixtures

 are a feature of the speech distribution and are not

affected by the channel. While this assumption is not strictly cor-
rect, it is convenient and reasonable as a first order approximation. 

The shift parameters  and  are learned using a traditional

maximum likelihood approach that attempts to maximize the
probability that the observed noisy data set is generated by the
transformed statistics. We define a likelihood function, L(Z) over
all the noisy observed cepstral vectors  given the unknown
parameters to optimize , θ, as:

 (11)

To find the set of parameters  that maximize  we can use
stereo data and the assumption that the a posteriori probabilities

 do not change due to the environment. The latter

assumption enables us to avoid the iterative reestimation needed in
traditional EM techniques when stereo data are not available. 

The modified estimation formulas for the correction terms are:

(12)

(13)

Compensation of noisy speech. This step is accomplished using
a modified minimum mean square error (MMSE) estimation
method. The estimator attempts to maximize the expected value of
the unobserved clean speech data:
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Since the dependence of the correction factor r(x) on x makes the
equation intractable, we approximate  by rk, the correction
factor associated with the mean of each Gaussian mixture. 

A novel feature of this method is that it attempts to update the
covariance matrix to reflect more accurately the effect of the envi-
ronment on the speech statistics. 

3.2. RATZ without stereo databases

In this section we extend RATZ to conditions where no stereo data
are available (“blind RATZ”). This entails only minimal changes
in the reestimation formulas for the shifts in means and covariance
matrix elements. In this case we do not have information about the
a posteriori probabilities since no stereo data are available. There-
fore  cannot be replaced by  in the estimation algo-
rithm. Using normal EM techniques we iteratively estimate

 until convergence is achieved.

The new reestimation formulas are:

The compensation step remains the same as in stereo RATZ.

4. EXPERIMENTAL RESULTS

In this section we compare the ability of stereo RATZ and blind
RATZ to learn the statistics of degraded speech. We show that
clean signal vectors estimated using stereo RATZ and blind RATZ
are very similar, despite the more limited information available to
the blind RATZ algorithm. Finally, we compare the recognition
accuracy obtained using the two RATZ algorithms with the perfor-
mance of previous noise robustness algorithms developed at CMU. 

4.1. Performance of RATZ in simulated noise

Artificial feature data were produced by a random number genera-
tor creating two-dimensional sample vectors with four equiproba-
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ble mixture Gaussian distributions with the following means and
variances:

The data were contaminated by artificial noise which had a two-
dimensional Gaussian distribution with a mean value of 0.50 and a
variance of 0.001 for both dimensions. The covariance matrix was
diagonal. 

Figure 3 compares the effectiveness of both algorithms in estimat-
ing clean speech vectors in the presence of this noise. The filled
circles in the two panels of Figure 3 indicate the locations of the
clean speech vectors, and the filled squares indicate the locations
of the noisy speech before compensation was applied. The dashed
arrows and continuous arrows indicate the corrections provided by
the stereo RATZ and blind RATZ algorithms, respectively. It can
be seen that blind RATZ provides a compensation that is almost as
complete as that provided by stereo RATZ. Similar results have
been observed on real speech statistics.

4.2. Performance of RATZ on speech recogni-
tion in noise 

The effectiveness of the RATZ algorithms was evaluated using the
CMU census database [1], a continuous speaker-independent data-
base consisting of strings of letters, numbers, and a few control
words with a total vocabulary size of 107 words. The training set
consisted of 1018 sentences stereo recorded over a noise-cancel-
ing close-talking microphone (CLSTK) and the desktop Crown-
PZM6FS microphone (CRPZM). The testing set consisted of 140
stereo-recorded sentences. The adaptation set used by all compen-
sation algorithms had a size of 400 stereo sentences randomly
chosen from the training set. The SPHINX-II continuous speech
recognition system was used.

In Table 1 we compare the recognition error rate of several ver-
sions of RATZ to the error rates of previous algorithms developed
at CMU [1,2]. The system was trained on clean speech and the
adaptation set was used to learn the noisy speech distributions.
Compensation algorithms were applied to the noisy data before
recognition. A recognition error rate of 12.4% was achieved using
the CLSTK microphone with no compensation.

It can be seen that the RATZ algorithms perform better than virtu-
ally all of the previous CMU algorithms. We also note that
accounting for the change in the variance improves performance.
Finally, blind RATZ, which does not make explicit use of the ste-
reo training data performs almost as well as stereo RATZ, and per-
forms better that some of the previous algorithms that use stereo
training, such as SDCN.
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Figure 3.  Comparison of compensation vectors obtained using
stereo RATZ and blind RATZ. Filled circles and filled squares
denote the locations of clean speech and uncompensated
degraded speech, respectively.

5. SUMMARY 

In this paper we introduce a new family of algorithms to deal with
the problem of speech recognition in noisy environments. We ana-
lyze the effects of noise on the statistics of common speech fea-
tures, and we note that the actual pdfs of the features are
frequently non-Gaussian. Nevertheless, we model the speech fea-
tures as Gaussian vectors with means that were shifted and vari-
ances that are compressed in the presence of noise. We compare
the performance of two implementations of the algorithm, stereo
RATZ and blind RATZ, and we demonstrate that blind RATZ can
perform at a comparable level to stereo RATZ without the need for
training with stereo databases. The algorithms were tested using
the non-closetalking alphanumeric census database and found to
provide superior error-rate reduction.
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Compensation Algorithm %ERROR

NONE 32.6

SDCN 27.0

FCDCN 22.0

CDCN 25.2

Blind RATZ 
 without variance comp.

25.1

Blind RATZ
 with variance comp.

24.5

Stereo RATZ
with variance comp.

21.2

Table 1.  Comparison of stereo RATZ and blind RATZ with 
other algorithms developed at CMU.


