
Vocabulary Independent Spoken Query: a Case for Subword Units

Evandro Gouvêa, Tony Ezzat

Mitsubishi Electric Research Labs, Cambridge, MA, USA
egouvea@gmail.com, tonebone@mit.edu

Abstract
In this work, we describe a subword unit approach

for information retrieval of items by voice. An algorithm
based on the minimum description length (MDL) prin-
ciple converts an index written in terms of words into
an index written in terms of phonetic subword units. A
speech recognition engine that uses a language model
and pronunciation dictionary built from such an inven-
tory of subword units is completely independent from the
information retrieval task. The recognition engine can re-
main fixed, making this approach ideal for resource con-
strained systems. In addition, we demonstrate that re-
call results at higher out of vocabulary (OOV) rates are
much superior for the subword unit system. On a mu-
sic lyrics task at 80% OOV, the subword-based recall is
75.2%, compared to 47.4% for a word system.
Index Terms: information retrieval by voice, subword
units, minimum description length

1. Introduction
Information retrieval by voice is becoming increasingly
important. With the proliferation of smart-phones, speech
becomes the preferred input modality for making queries
to search engines, particularly when the queries are long,
complex, and require a lot of typing.

A prototypical system for spoken query retrieval is
shown in Figure 1. The system contains two main com-
ponents: an automatic speech recognition (ASR) front-
end and an information retrieval (IR) back-end. The ASR
front-end decodes an input spoken query into an N-best
list of word hypotheses. The N-best list is then submit-
ted to the IR back-end, which retrieves the top-K relevant
documents for that query.

Early attempts at building such systems [1] focused
mainly on pointing out the robustness these systems ex-
hibited to ASR word error rates. Typically, the language
model (LM) used by the ASR is built from the entries in
the database to be indexed. If the set of documents in
this database changes, the LM has to change. Moreover,
new databases may have words not present before. It is
therefore necessary to re-prune or re-compress the LMs
whenever the databases to be indexed change. This is be-
cause the novel words introduced by a new database need
to be re-inserted into the LMs.

In our previous work [2], we presented an alterna-

 Song Lyrics
Database

Automatic
Speech

Recognition
Engine

Information
Retrieval

Query
 Lookup

<Artist/Album/Song title>LYRICS

<Tim McGraw/Greatest Hits Vol 2/Something Like
That>IT WAS LABOR DAY WEEKEND I WAS
SEVENTEEN…

<Eurythmics/Peace/My True Love>MY TRUE
LOVE IS SITTING…

“Sorry for it all..”

Song
Index

 Language
Model

Pronunciation
Dictionary

ASR
N-best

Hypotheses

IR
N-best

List

57.45 <Eurythmics/
Peace/My True Love>

50.49 <Air Supply/Other
Songs/She Never Heard
Me Call> SORRY FOR IT ALL

SORRY FOR NOW
…

Figure 1: Overview of an Information Retrieval by Voice
for a Song Lyric Task
tive where we dissociated the text we use to build the
pronunciation and language model and the database con-
taining the documents to be indexed. An algorithm, in-
spired by the Morfessor [3] algorithm and based on the
minimum description length (MDL) principle, converts a
database written in terms of words into a database writ-
ten in terms of phonetic subword units. As a result, once
a subword unit LM is built, it does not need to be re-
compiled. Rather, novel databases are simply rewritten
in terms of the subword unit inventory. These phonetic
subword units are vocabulary independent: if we change
the set of documents we want to retrieve, the set of units
used by the ASR engine remains the same.

Recent work on subword unit inventory creation meth-
ods [4][5][6] have focused primarily on the use of sub-
words for ASR, not retrieval, and in particular on their
ability to handle out-of-vocabulary words (OOVs). In IR
tasks, such as spoken term detection [7] and question an-
swering [8], subword units do not have to be reconverted
to a word to give it a more human friendly appearance.
The IR engine can use the subword units directly.

Here, we extend our previous work by studying the
effects of out of vocabulary (OOV) words in the infor-
mation retrieval task. As a platform for our experiments,
the song retrieval task was chosen. In this task, a user
retrieves songs by speaking, not singing, portions of a
song’s lyrics.

HOURGLASS AW R + G L AE S
HOUSE HH AW S
HOUSES HH AW S + IH Z
HOUSES(2) HH AW + Z + AH + Z

Table 1: Examples of words rewritten in terms of sub-
words. Note that some words with alternate pronuncia-
tions have multiple subword representations.

In Section 2 we summarize the main points of the
MDL algorithm, introduced in [2]. In Section 3 we de-
scribe the experimental setup, and in Section 4 we present
and discuss the results, concluding in Section 5.

2. MDL Subword Unit Inventory
Our definition of a subword unit may be gleaned from
Table 1. A word, e.g. HOURGLASS, is rewritten as a
sequence of subword units AW R and G L AE S, where
the subword units are sequences of phonemes. A subword
unit may also span an entire word, as with HOUSE. The
subword unit inventory is thus a flat hybrid [5] collection
of subword units that span portions of words, or entire
words. Our algorithm rewrites a database I in terms of a
subword unit inventory U given the set of pronunciations
Q of words found in I .

The subword unit inventory algorithm utilizes the Min-
imum Description Length (MDL) principle [3] to search
for an inventory of units U which minimize the sum of
two terms, L(Q|U) and L(U):

argmin
U

λL(Q|U) + (1− λ)L(U) (1)

where 0 ≤ λ ≤ 1 is chosen by the user to achieve the de-
sired number of subwords M . L(Q|U), the Model Pre-
diction Cost, measures the number of bits needed to rep-
resent Q with the current inventory U . L(U), the Model
Representation Cost, measures the number of bits needed
to store the inventory U itself. The MDL principle finds
the smallest model which also predicts the training data
well. Smaller models generalize better to unseen data.

The Model Representation Cost is computed over all
the units in U from the probability p(phoneme), esti-
mated from the frequency counts of each phoneme in Q:

L(U) =
∑
u∈U

∑
phoneme∈u

− log p(phoneme) (2)

The Model Prediction Cost measures the bits needed
to represent Q with the current subword segmentation:

L(Q|U) =
∑
q∈Q

∑
u∈tokens(q)

− log pu (3)

Here tokens(q) is a function that maps a pronunciation
onto a sequence of subword units. It partitions phones in
the pronunciation of a word into subword units in U .

To find the optimal subword inventoryU and segmen-
tation tokens(q), we utilize a greedy, top-down, depth-
first search algorithm, shown in Figure 2 as pseudocode.

Algorithm splitsubwords(node)
Require: node corresponds to an entire word or subword unit
Note: L(U) is the model representation cost, L(Q|U) is the
model prediction cost

// FIRST, TRY THE NODE AS A SUBWORD UNIT//
evaluate L(Q|U) using node
evaluate L(U) using node
bestSolution← [L(Q|U) + L(U), node]

// THEN TRY TWO-WAY SPLITS OF THE NODE //
for all substrings pre and suf such that pre ◦ suf = node do

for subnode in [pre, suf] do
if subnode is present in the data structure then

for all nodes m in the subtree rooted at subnode do
increase count of m count by count of node
increase L(Q|U) if m is a leaf node

else
add subnode into the data structure, same count as node
increase L(Q|U)
add contribution of subnode to L(U)

if L(Q|U) + L(U) < score stored in bestSolution then
bestSolution← [L(Q|U) + L(U), pre, suf]

// SELECT THE BEST SPLIT OR NO SPLIT //
select the split (or no split) yielding bestSolution
update the data structure, L(Q|U), and L(U) accordingly

// PROCEED BY SPLITTING RECURSIVELY //
splitsubwords(pre)
splitsubwords(suf)

Figure 2: splitsubwords, a recursive, top-down,
greedy, algorithm for inducing the subword unit inven-
tory based on the MDL principle.

A random word is chosen and scanned left-to-right,
yielding different prefix-suffix subword splits. For each
split candidate, the cumulative cost is computed. The
candidate with the lowest cost is selected. Splitting con-
tinues recursively until no more gains in overall cost are
obtained by splitting a node into smaller parts. After all
words have been processed, they are shuffled randomly,
and each word is reprocessed. This procedure is repeated
until the inventory sizeM is achieved and a subword unit
inventory U is induced, where each unit u has an associ-
ated probability pu.

2.1. Rewriting a Database and LM
Given a novel set of pronunciations Q′ from a pronunci-
ation dictionary W ′, the Viterbi algorithm is used to seg-
ment each novel pronunciation into subword units from
the inventory U , with smallest cost

∑n
i=1− log pui .

To rewrite a database I in terms of subword units, the
words are scanned sequentially. Each word is mapped to
subword unit sequence. If a word has multiple pronunci-
ations, one mapping is chosen randomly. Once a database
has been rewritten in terms of subword units, the LM is
trained on the rewritten database.

3. Experimental Design
3.1. Dataset Description
The dataset used in this work is the same as the one used
by [4]. The song collection consists of 35,868 songs.
Each song consists of a song title, artist name, album

name, and the song lyrics. A unique ID is created for
each song by merging the song title, artist name, and al-
bum name. Figure 1 shows examples for several songs.

The test set originates from 1000 songs that were se-
lected randomly from the song database, and divided into
groups of 50. Twenty subjects (13 males and 7 females)
were instructed to listen to 30-second snippets of 50 songs
each, and to utter any portion of the lyrics that they heard.
Subjects were also prompted to transcribe their record-
ing, which served as reference transcripts (for calculating
phone error rates). The song title was also kept.

The ground truth for the IR experiments is the set of
songs with the same title as the query song. The song title
as a key addresses the retrieval of covers, as well as songs
re-recorded by the same artist. An exception table is used,
however, to handle cases when songs have different lyrics
but similar titles, e.g. Angel by Jimi Hendrix or Dave
Matthews Band. This exception table was built by hand.

In these experiments, we worked with two subsets of
the database. The smallest lyric set, ls2000, contains
1989 songs that serve as ground truth to the test set utter-
ances. The largest set, ls36000, contains all the songs.

3.2. ASR
The prototypical system, shown in Figure 1, comprising
of an ASR front-end and an IR back-end, forms the core
architecture for experiments.

In this work, the CMU Sphinx-3 ASR system is used
to generate the 7-best hypotheses for each spoken query,
which are then submitted to the IR back-end for retrieval.
The input spoken query is converted into standard MFCC.
The acoustic models used by the decoder are triphone
HMM, trained from Wall Street Journal data resampled
to 8kHz. The word pronunciations are obtained from
the CMU dictionary when available, or NIST’s addttp
(G2P tool) when not. Finally, the LMs are trigrams with
Witten-Bell smoothing, built using the CMU SLM toolkit.
All of these components are available as open source.

The ASR is evaluated based on the Phone Error Rate
(PER), the sum of substitutions, insertions, and deletions
made by the ASR engine at the phone level. We used PER
because we do not have the references for subwords.

3.3. Information Retrieval
The IR back-end uses a vector space model approach for
retrieval. Each song document forms a multidimensional
feature vector v. The query also forms a vector q in same
feature space. A score Score(q, v) measures the similar-
ity between q and v. The songs with the top 7 scores are
submitted for our recall analysis.

After evaluating several different feature spaces and
scoring methods, the features used were counts of the
unique unigrams, bigrams, and trigrams present in doc-
uments and query, which we call terms. The scoring
method used was Score(q, v) =

∑
∀t δ(t)IDF(t), where

t ∈ {terms(q)
⋃
terms(v)}, δ(t) is 1 if term t appears

in both query and document, 0 otherwise, and IDF(t)

is the inverse document frequency of term t. No docu-
ment length normalization was performed. Similarly to
question answering tasks [9], here the documents are too
short to accurately estimate the probability distributions
of words. Direct matches between words in the query
and in the songs are therefore better measure of similar-
ity than query likelihood.

The baseline system is a word system, in which the
LM and index are comprised of words as base units. This
architecture is compared with a subword system, where
the LM and the index base units are subwords. The IR
accuracy metric is the k-call-at-n, where the information
need is considered satisfied if at least k correct retrievals
appear in the top n. The 1-call-at-7 measures the percent-
age of test utterances for which the IR back-end retrieves
at least one of the ground truth songs in the top 7 results.

3.4. Out of Vocabulary Rates
We simulated a range of OOV rates by pruning the dic-
tionary and language model used by the recognizer or by
the MDL algorithm. In the case of words, we built the
LM from the set of songs we wanted to index. We sim-
ulated an OOV rate by pruning the dictionary based on
word frequency computed in the index data. For an OOV
rate of N%, we pruned the dictionary so that N% of the
words in the test set are removed, as well as all words less
frequent than these. The minimum OOV rate is 5%.

In the case of subwords, we used the pruned dictio-
nary as described above for building the subword unit
inventory. We mapped ls2000 (cf. Section 3.5) from
words to subwords using this inventory. The mapping
from words to subwords is induced by the Viterbi algo-
rithm, as in Section 2.1. ls2000, mapped to subwords,
was used to create an LM. The subword dictionary triv-
ially maps a subword unit to its constituent phones. The
LM and dictionary remained fixed for all recognition ex-
periments regardless of the set of songs to index.

3.5. Subword Unit Inventory Sizes
In our previous work [2], we studied the effect of building
the inventory of subword units from different datasets.
We concluded that building the inventory from the small-
est set was better than from the largest one, even gener-
alizing better. Here, we use the smallest set, ls2000, to
build inventories of sizes 300, 600, 1200, 2400, and 4800
units. For a given size and OOV rate, we ran recall ex-
periments using indices of different sizes. We built each
index by inducing a mapping from words in the songs to
subword units. We assumed that it is much less expensive
to generate pronunciations than to build an LM for each
index. Therefore, at index-build time, we used a full pro-
nunciation dictionary. All words used to build the IR are
induced from the inventory built from ls2000.

4. Results and Discussion
Figure 3 shows recognition accuracy (in PER) as a func-
tion of OOV rate. We show two word-based systems built

5 20 40 60 80
0

5

10

15

20

25

30

35

OOV rate (%)

P
E

R
 (

%
)

word ls2000
word ls36000
subword units 1200
subword units 2400
subword units 4800

Figure 3: Phone Error Rate as OOV rate changes. Word
systems built from different subsets of the database. Sub-
word systems with various inventory sizes.

300 600 1200 2400 4800
0

10

20

30

40

50

60

70

80

90

100

Subword Units

1−
ca

ll−
at

−7
 (

%
)

OOV rate 5%
OOV rate 20%
OOV rate 40%
OOV rate 60%
OOV rate 80%

Figure 4: Recall for lyricset ls36000 with different
subword unit inventory sizes at different OOV rates.
from ls2000 and ls36000, the smaller having a more
constrained language model. We also show subword-
based systems built with different number of units. As
expected, the PER degrades much more gracefully for the
subword systems as the OOV rates increases. The plot
also shows that the PER is robust to the inventory size.

Figure 4 depicts the retrieval performance for a fixed
lyricset, ls36000, as a function of subword inventory
size. The dramatic performance drop as the number of
units decreases can be explained by an analysis of the
subword unit inventory. When its size is small, most of
the pronunciations are mapped to sequences of phones in-
stead of larger subword units. The index becomes mostly
based on the distributions of phones in the documents.
This distribution is not sufficiently discriminative, explain-
ing the drop in recall. We used inventories of sizes larger
than 1000 in the remaining experiments.

Figure 5 displays the retrieval performance as a func-
tion of OOV rates comparing the word and the subword
systems. The figure shows results with the indices built
from ls2000 and ls36000. While the recall for the
word system degrades as the OOV rate increases, as ex-
pected, the recall for the subword system remains at a
reasonable level. This result was achieved by assum-
ing that the LM, used by the ASR system, is fixed, but

5 20 40 60 80
40

50

60

70

80

90

100

OOV rate (%)

1−
ca

ll−
at

−7
 (

%
)

Word − ls2000
Word − ls36000
Subword − ls2000
Subword − ls36000

Figure 5: Recall for indices of different sizes as OOV rate
changes. The subword unit inventory has 1200 units.
the pronunciation dictionary, used to induce a subword
mapping, can change. This assumption is reasonable for
embedded systems, where rebuilding an LM can be pro-
hibitively costly, but using a G2P tool is still practical.

5. Conclusion
A subword based system isolates the ASR engine from
the IR task. The ASR can use a fixed LM and dictionary,
rather than an LM that has to be rebuilt whenever the IR
index changes, possibly at a high computational cost.

We have demonstrated that a subword-based voice
search system is much more robust to OOVs than its word-
based counterpart. Novel words or unexpected spellings,
common in applications such as lyrics search, can drive
the OOV rate to high levels. This work shows that sub-
word systems are fairly immune to this increase. Our re-
sults also indicate that, although within a limit, the recall
rate is robust in a wide range of subword inventory sizes.

In future work, we would like to prove the generality
of our results using other ASR and IR platforms. Future
work also includes applying our algorithms to other types
of datasets besides music lyrics.

6. References
[1] P. Wolf and B. Raj, “The MERL SpokenQuery information retrieval

system a system for retrieving pertinent documents from a spoken
query,” in Proc. ICME, 2002.

[2] E. Gouvêa, T. Ezzat, and B. Raj, “Subword unit approaches for re-
trieval by voice,” in SpokenQuery Workshop on Voice Search, 2010.

[3] M. Creutz and K. Lagus, “Unsupervised morpheme segmentation
and morphology induction from text corpora using Morfessor 1.0.”
Helsinki University of Technology, Tech. Rep., Mar. 2005.

[4] G. Choueiter, “Linguistically-motivated sub-word modeling with
applications to speech recognition,” Ph.D. dissertation, MIT, 2009.

[5] M. Bisani and H. Ney, “Open vocabulary speech recognition with
flat hybrid models,” in Proc. EUROSPEECH, 2005, pp. 725–728.

[6] G. Zweig and P. Nguyen, “Maximum mutual information multi-
phone units in direct modeling,” in Proc. Interspeech, Sep. 2009.

[7] R. Rose et al., “Subword-based spoken term detection in audio
course lectures,” in Proc. ICASSP, 2010.

[8] T. Mishra and S. Bangalore, “Speech-driven query retrieval for
question-answering,” in Proc. ICASSP, 2010.

[9] V. Murdock and W. B. Croft, “Simple translation models for sen-
tence retrieval in factoid question answering,” in Proc. SIGIR 2004.

