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Abstract

AT&T has recently opened its extensive portfolio of state-of-
the-art Speech Technology to external end-developers as a plat-
form called “The AT&T Speech API”. This study discusses a
series of practical challenges found in an industrial deployment
of speech to text services, particularly, we examine different
strategies for customizing the speech to text process by consid-
ering intrinsic factors, inherent to the audio signal, or extrinsic
factors, available from other sources, in an industry-grade im-
plementation.
Index Terms: speech recognition, api, customization

1. Introduction
Powered by AT&T WatsonSM[1], the recently released AT&T
Speech API [2, 3, 4] is a platform that exposes AT&T’s state-of-
the-art speech technology to external end-developers, allowing
them to quickly build applications leveraging AT&T’s exper-
tise in the area. As part of the AT&T API platform, the AT&T
Speech API is supported by the AT&T Developer Program that
provides toolkits, sample codes, etc. The AT&T Speech API re-
sides in AT&T’s Silver Lining Cloud. It accepts POST requests
via the HTTP protocol as a RESTful service. The services
offered by the AT&T Speech API are multi-lingual, carrier-
independent (i.e., end-clients do not need to be AT&T sub-
scribers), and device-independent; therefore end-applications
are free to run on smartphones, game-consoles, or even home
appliances.

One important aspect of tailoring the contexts to the differ-
ent domains entails providing resources to end-developers that
allow them to fine tune the Speech API for each request. This
fine tuning involves several facets that we view broadly as cus-
tomization. In our study, customization includes selecting the
acoustic environment, as well as adaptation to the language-
domain, possibly using metadata available at the time of the
request. The metadata may include location information for a
mobile application, phone-numbers and names of both caller
and callee for a voicemail to text application etc.

We describe some background information about the AT&T
Speech API in Section 2, and discuss customization of the
acoustic model in Section 3, and of the language model in Sec-
tion 4. We conclude in Section 5.

2. Background
End-developers have two methods for customizing Speech
API to their own application. The first method is to select
any of the built-in contexts provided by the API. There are
language-contexts like web-search, voicemail-to-text (VMTT),
question-answering, gaming, etc.; and there are acoustic-
contexts like smartphone, far-field or PSTN microphones. The

second method is to modify the recognition network on-the-fly
by submitting inline-content.

2.1. Dynamic Hierarchical Language Models

Finite State Machine (FSM) [5, 6] is the framework upon which
AT&T WatsonSM is implemented, fundamental for the dynamic
and efficient combination of multiple recognition networks. Dy-
namic Hierarchical Language Models (DHLMs) is an FSM-
based technology that allows on-the-fly combination of Lan-
guage Models (LM) without any need to recompile them into
a new static network. The LMs that make up a DHLM can
be of any kind, including statistical language models (SLMs),
context-free grammars (CFGs), and other DHLMs.

2.2. Inline-Content

One of the methods for customizing the AT&T Speech API
is to share inline-content via the HTTP POST message. End-
developers may submit POST requests to the AT&T Speech
API by packaging the data into a valid MIME message. The
content-type multipart allows the message to convey mul-
tiple sections, where inline-content can be attached to the mes-
sage that includes the audio-data. The combination of DHLM
and inline-content makes on-the-fly customization possible.

3. Acoustic Customization
Given that the AT&T Speech API is device independent, we an-
ticipate diversity in acoustic conditions. For example, while it
is reasonable to presume that handheld devices will be placed at
a distance shorter than the average human arm-length (60 cm),
we cannot do so for devices like a TV set. To address this,
end-developers may select the microphone-type in each request;
namely PSTN, smartphone, or far-field. The AT&T WatsonSM

has the capability to load the corresponding acoustic-model ef-
ficiently on-the-fly without incurring in any noticeable delays.

To assess the effectiveness of our far-field acoustic-model,
we performed an evaluation on WSJ-1 data. We loaded the stan-
dard TCB05CNP language model, and re-recorded1 the si et h2
evaluation set at a distance of 2 m.

Table 1 shows how the word error rate raises quickly as
the microphone is moved away from the speaker while still us-
ing a conventional smartphone acoustic-model (AM). Our cus-
tomized AM adapted to far-field conditions, however, recovers
around 85% of that loss. Additionally, close-talk recordings
have a small (roughly 10% relative) increase in error even in
the mismatched condition when the far-field AM is loaded.

1We re-recorded the far-field test-set at random times of the day in a
living-room setup with an outside (but closed) window.



Table 1: Relative word error rate increases for WSJ evaluation
under different acoustic conditions.

Mic-Type (AM)
Smartphone Far-field

Mic-Distance Close-talk 0 9.9%
Far-field1 179% 25.5%

4. Language Customization
The AT&T Speech API allows a number of configurations in
which end-developers may customize the language-space ac-
cepted by the API’s recognition-network at run-time. The
simplest configuration is called x-grammar, and it lets end-
developers replace the API’s built-in recognition network with
their own. The submitted recognition networks must be CFGs
in SRGS format sent within a multipart message, and precede
the audio (speech) part. Alternatively, end-developers may take
advantage of the API’s built-in SLM recognition network, and
supplement it with inline-content in the form of an SRGS for-
matted CFG. Such inline CFG can be placed in series with the
built-in SLM (x-grammar-prefix), placed in parallel with
the built-in SLM (x-grammar-altgram), or placed inside
the built-in SLM as an inserted-loop (x-grammar-loop).

The x-grammar configuration is useful for command-
and-control applications where end-users are prompted with
a list of phrases to speak. The x-grammar-prefix
is designed for open-ended phrases where initial carrier-
phrases are known, e.g., “send message hello mark”. The
x-grammar-altgram supplements the built-in SLM with a
language containing a set of close-ended phrases known to be
important. The x-grammar-loop is free to switch between
the built-in SLM and the inline-CFG as many times as needed.
This is useful when extra information is available that may be
useful to the decoder. In a voicemail task, for example, the
caller is more likely to say their phone number than other arbi-
trary number sequences. The decoder may use this information
to boost hypotheses where the caller phone number is present.

4.1. Case Study: Voicemail to Text

As a proof of concept, we evaluated the x-grammar-loop
type with one of the contexts available from the AT&T Speech
API, Voicemail-to-Text (VMTT). In our experiments, we sent
CFGs containing the caller and callee phone numbers, as these
are available as metadata to the carrier when the voicemail is
recorded. Our test set consisted of actual voicemail messages
collected by an industrial-level deployment.

For our evaluation, we tagged occurrences of phone num-
bers in each voicemail message. A phone number tag was
used if the 7- or 10-digit number sequence that was spoken
in the message matched either the caller or the callee phone
number. An other number tag was used if a 7- or 10-digit
number sequence was spoken, identifying a phone number, but
this number did not match either the caller or the callee phone
number. In this case, the phone numbers provided via the
x-grammar-loop cannot help but should not hinder perfor-
mance. The tagged data was considered correct only if the rec-
ognized sequence matched the whole tagged sequence, i.e., the
complete phone number.

We also explored the case where the SLM itself was modi-
fied to take advantage of metadata sent via a CFG at recognition
time. We found instances of 7- to 10- digit number sequences
in the LM training corpus and replaced these instances with a
PHONE tag. We created an SLM with this modified training
corpus. During recognition, the CFG replaces the PHONE tag

wherever it appears in the SLM, as if the CFG were embed-
ded in the SLM. We refer to this approach as the embedded
approach. The main difference between using the unmodified
SLM and the embedded one is that with the unmodified SLM,
the language history is discarded when we transition from the
SLM to the CFG and vice versa, whereas in the embedded ap-
proach, the history is preserved.

Table 2 presents the tagged data accuracy. The results are
aggregated by the type of tagged data, i.e., phone numbers or
other numbers.

Table 2: Tag accuracy (%) aggregated by the tags phone number
or other number, i.e., phone numbers not in the metadata.

Approach Phone Other
number number

Baseline 86.6 83.1
Loop with SLM 88.0 83.1
Embedded in SLM 96.1 83.1

The tagged data accuracy shows some differences among
the approaches. Reassuringly, the accuracy of phone numbers
not in the metadata was not affected. The embedded CFG has
an accuracy that is dramatically better than with other ones. The
better use of context during recognition seems to contribute to
this result.

The use of embedded metadata, however, requires com-
pletely retraining the SLM, which is not always practical. Even
if it is to a modest extent, the DHLM with Inline Content placed
in a loop with the SLM improves over the baseline. It is also
worth mentioning that the settings presented here were chosen
to keep the word error rate at better or same level as the base-
line. We could have traded off some WER in favor of better
tagged data accuracy.

5. Conclusions
Our study depicted a series of real-world challenges, and pre-
sented practical solutions that lead to improvements in our cur-
rently deployed system within an industrial setting. The need
for supporting accurate ASR even in diverse acoustic environ-
ments was executed in collaboration with current customers.
The ability of AT&T WatsonSM to customize the recognition
network on-the-fly, taking advantage of metadata or inline-
content, allows end-developers to personalize each ASR trans-
action by sharing ephemeral copies of information. The results
presented here represent the initial stages of our work in cus-
tomization that have already been deployed to customer and
target a large scale usage.

6. Acknowledgements
We thank D. Caseiro and C. Galles for several helpful discus-
sions.

7. References
[1] V. Goffin, C. Allauzen, E. Bocchieri, D. H. Tur, A. Ljolje, and

S. Parthasarathy, “The AT&T Watson speech recognizer,” in Proc.
ICASSP, September 2005.

[2] J. Donovan, “AT&T Speech API Gives Developers the
Power of AT&T WATSON,” July 2012. [Online]. Available:
http://www.attinnovationspace.com/innovation/story/a7782925

[3] G. Di Fabbrizio, T. Okken, and J. G. Wilpon, “A speech mashup
framework for multimodal mobile services,” in Proc. Int. Conf.
Multimodal Interfaces. ACM, 2009, pp. 71–78.



[4] I. Arizmendi, S. Parthasarathy, and R. C. Rose, “System and
method for speech recognition services,” May 4 2010, US Patent
7,711,568.

[5] M. Mohri, F. C. N. Pereira, and M. Riley, “Weighted finite-state
transducers in speech recognition,” Computer Speech and Lan-
guage, vol. 16, no. 1, pp. 69–88, 2002.

[6] M. Mohri, F. Pereira, and M. Riley, “Speech recognition with
weighted finite-state transducers,” Handbook on speech processing
and speech communication, Part E: Speech recognition, 2008.


