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ABSTRACT

This paper describes the 1997 Hub-4 Broadcast News Sphinx-
3 speech recognition system. This year’s system includes full-
bandwidth acoustic models trained on Broadcast News and Wall
Street Journal acoustic training data, an expanded vocabulary, and a
4-gram language model for N-best list rescoring. The system struc-
ture, acoustic and language models, and adaptation components are
described in detail, and results are presented to establish the con-
tributions of multiple recognition passes. Additionally, experimen-
tal results are presented for several different acoustic and language
model configurations.

1. INTRODUCTION

This year’s Hub-4 task consisted of transcribing broadcast news
shows in a completely unpartitioned manner, meaning that the broad-
cast news audio was not accompanied by any types of markers in-
dicating speaker or show changes. Recognition systems had to rely
on completely automatic methods of segmenting the audio into man-
ageable pieces. Additionally, no information was provided about
channel conditions, speaker gender or accent, the presence of noise
or music, or speaking style, as was done in 1996. Therefore, this
year’s recognition task represented a more realistic scenario in which
a speech recognizer needed to intelligently and automatically cope
with a variety of acoustic and linguistic conditions.

In the following sections, we present an overview of the Sphinx-3
evaluation system. In Section 2, the stages of the recognition system
are introduced. The details of the specific evaluation configuration
chosen are discussed in Section 3. A variety of experimental results
on acoustic model and language model variations are presented in
Section 4. Evaluation results for each stage of processing are given
in Section 5.

2. SYSTEM OVERVIEW

The Sphinx-3 system is a fully-continuous Hidden Markov Model-
based speech recognizer that uses senonically-tied states [1]. Each
state is a mixture of a number of diagonal-covariance Gaussian den-
sities. The1997 Sphinx-3 configuration is similar in many ways
to the 1996 system [5]. The recognition process consists of acous-
tic segmentation, classification and clustering [8], followed by three
recognition passes. Each pass consists of a Viterbi decoding using
beam search and a best path search of the Viterbi word lattice. The
final two passes include N-best list generation and rescoring. Be-
tween each pass, acoustic adaptation using a transformation of the
mean vectors based on linear regression (MLLR) [4] is performed.

These steps are summarized in the following list:

1. Automatic data segmentation, classification, and clustering
2. Pass 1

a. Viterbi decoding using beam search
b. Best path search of Viterbi word lattice

3. Acoustic adaptation
4. Pass 2

a. Viterbi decoding using beam search
b. Best path search of Viterbi word lattice
c. N-best generation and rescoring

5. Acoustic adaptation
6. Pass 3

a. Viterbi decoding using beam search
b. Best path search of Viterbi word lattice
c. N-best generation and rescoring

2.1. Front End Processing
Before recognition, the unannotated broadcast news audio is auto-
matically segmented at acoustic boundaries. Each segment is clas-
sified as either full-bandwidth or narrow-bandwidth in order that the
correct acoustic models may be applied. Segments are then clus-
tered together into acoustically-similar groups, which is useful for
acoustic adaptation. Finally, all segments that encompass more than
30 seconds of data are subsegmented into smaller utterances. These
techniques are summarized below; details are available in [8].

Automatic Segmentation: The goal of automatic segmentation is
to break the audio stream into acoustically homogenous sections.
Ideally, segment boundaries should occur in silence regions so that
a word is not split in two. To accomplish this, a symmetric relative
cross entropy distance metric compares the statistics of 250 frames
(2.5 sec) of cepstra before and after each frame. When the distance
is at a local maximum and is also greater than a predefined threshold,
an acoustic boundary is hypothesized. Instead of the boundary being
placed right at the location of the local maximum, two seconds
of audio before and after the hypothesized break are searched for
silences. A silence is located at framex when the following criteria
are met (1 frame equals 10 ms):

1. The average power over the frames [x-7,x+7] is more than 8
dB lower than the power over the frames [x-200,x+200].

2. The range of the power over the frames [x-7,x+7] is less than
10 dB.

If a silence is found within the search window, an acoustic boundary
is placed at that location. If no silence is found, no acoustic boundary
is assigned.



Classification: Each segment is then classified as either full-
bandwidth (non-telephone) or narrow-bandwidth (telephone) using
Gaussian mixture models. The full-bandwidth Gaussian mixture
model contains 16 Gaussian densities and was trained from the data
labelled as F0, F1, F3, and F4 in the Hub-4 1996 acoustic training
corpus. The narrow-bandwidth Gaussian mixture model contains
8 densities and was trained using hand-labeled telephone segments
from the 1995 Hub-4 training data.

Clustering: Segments are clustered into acoustically-similar
groups using the same symmetric relative cross entropy distance
metric mentioned for acoustic segmentation. First, the maximum
likelihood estimation of single density Gaussian parameters for each
utterance is obtained. Then, utterances are clustered together if
the symmetric relative cross entropy between them is smaller than
an empirically-derived threshold. Full- and narrow-bandwidth seg-
ments are not clustered together.

Sub-segmentation: To reduce the length of the automatically gen-
erated segments to 30 seconds, additional silences in each segment
are located, and the segments are broken at those points. The result-
ing subsegments are given to the decoder for recognition.

2.2. Recognition Stages

Viterbi Decoding Using Beam Search: The first stage of recogni-
tion consists of a straight-forward Viterbi beamsearch using continu-
ous density acoustic models. This search produces a word lattice for
each subsegment, as well as a best-scoring hypothesis transcription.

Best Path Search: A word graph is constructed from the Viterbi
word lattice and then searched for the global best pathaccording
to a trigram language model and an empirically determined optimal
language weight using a shortest path graph search algorithm [6].
The only acoustic scores used in this search are the ones stored in
the lattice from the Viterbi recognition. As a result, this search is
much quicker than the Viterbi search. A new best-scoring hypothesis
transcription is produced.

N-best Generation and Rescoring: N-best lists are generated for
each subsegment using an A* search on the word lattices produced
by the Viterbi beam search. For this evaluation,N = 500. The
N-best rescorer takes as input the N-best lists, which are augmented
with the single best hypothesis generated by the Viterbi decoder and
the single best hypothesis generated by the best path search. The
N-best lists are rescored using the acoustic scores provided by the
Viterbi decoder, a new language model score, and a word insertion
penalty. Given the rescoring, the new highest scoring hypothesis
is output for the subsequent adaptation step or for the final system
output.

2.3. Acoustic Adaptation

Unsupervised adaptation of Gaussian density means in the acoustic
model is performed, given the output of the best path or N-best
search. In order to obtain larger sample sizes, the test set is clustered
as described in Section 2.1.

The maximum likelihood linear regression (MLLR) [4] approach to
mean adaptation is used. A 1-class MLLR transform is obtained
for each cluster using the baseline acoustic models and the selected
hypotheses. The means of the baseline acoustic models are trans-
formed for each cluster and the adapted models are used during the
next recognition pass.

3. EVALUATION SYSTEM

3.1. Acoustic Models
The acoustic models used in the evaluation system are fully-
continuous, diagonal-covariance mixture Gaussian models with ap-
proximately 6000 senonically-tied [1] states. A five-state Bakis
model topology is used throughout.

Two sets of acoustic models are used: non-telephone (full-
bandwidth) models and telephone (narrow-bandwidth) models. The
non-telephone models are trained over the Wall Street Journal SI-
284 corpus concatenated with the Hub-4 Broadcast News training
corpus. Mixture splitting is used to obtain an initial set of acoustic
models. Further exploration of the acoustic parameter space is per-
formed using the state labels generated from a forced alignment of
the initial models. These labels are used to classify the training data
for K-means followed by an E-M reestimation of the output den-
sity parameters. One or more passes of Baum-Welch reestimation
is then performed to correct the Viterbi assumption underlying the
state classification. A final configuration of 6000 tied states and 20
mixture components per state is obtained using this approach.

The telephone models are trained on WSJ SI-321 with reduced band-
width. This acoustic model is structured as 6000 senonically-tied
states mapped into triphones, plus 52 context independent phones
and 3 noise phones (including silence). Each tied state is a mixture
of 16 densities.

3.2. Dictionary
The recognizer’s vocabulary consists of the most frequent 62,549
words of the Broadcast News language model training corpus, sup-
plemented with the 8,309 words from the 1995 Hub-4 Marketplace
training data and 355 names from the Broadcast News acoustic train-
ing data speaker database. The final number of unique words in the
vocabulary is 62,927, which results in a dictionary size of 68,623
pronunciations. We refer to this vocabulary as our 64k vocabulary.

3.3. Language Models
The language model used in the recognizer is a Good-Turing dis-
counted trigram backoff language model. It is trained on the Broad-
cast News language model training data and the 1995 Hub-4 Market-
place training data. The model is built using a 64k vocabulary, and
excludes all singleton trigrams. The out-of-vocabulary rate (OOV)
and perplexity (PP) of this model on the development and evaluation
data is shown in Table 1.

OOV PP
DEV 0.63% 170
EVAL 0.54% 171

Table 1: Out-of-vocabulary rate and perplexity of the evaluation
language model on the development and evaluation test sets.

A 4-gram language model smoothed with a variation of Kneser-Ney
smoothing is used for N-best rescoring. This model uses the same
training data and 64k vocabulary as the Good-Turing discounted
model, but does not exclude anyn-grams. The smoothing param-
eters, language weight, and word insertion penalty are optimized
using Powell’s algorithm on the entire development test set.

Filled pauses are predicted with unigram probabilities that are esti-
mated from the acoustic training data [7]. This year, acoustic models



were built from scratch for each filled pause event.

3.4. Improvements
This year’s evaluation system incorporates several improvements
over last year’s system. The acoustic models are trained on an
improved lexicon, and the filler word set introduced last year is
trained from scratch. The acoustic models are also trained from
scratch, on both the SI-284 Wall Street Journal data and the Broadcast
News acoustic training data. The language model is built from
an enlarged vocabulary, and does not exclude singleton bigrams
as was done last year. This year, phrases and acronyms are not
included in the vocabulary, since their inclusion did not significantly
improve recognition performance in development experiments (see
Section 4.4). Also, a 4-gram language model is used for N-best list
rescoring, instead of the trigram model from last year.

4. EXPERIMENTS
The 1997 development test set consists of four hours of broadcast
speech representative of the different acoustic conditions and styles
typical of the broadcast news domain. In order to speed up exper-
iment turn-around time, two shortened development test sets were
defined as subsets of the complete 4-hour set.SET1 represents
a 1-hour selection of acoustic segments taken from last year’s PE
segmentation of different F-conditions. Segments were selected so
that the test set is acoustically balanced, containing data from all
F-conditions in the same proportion that these conditions occur in
the entire 4-hour development set. The selected segments provide
adequate speech from a number of speakers for speaker adaptation
experiments, and cover each development set show. The chosen
segments are not necessarily adjacent in time and are based on the
original PE segmentations. All segments are further subsegmented
automatically so that they are not longer than 30 seconds.

The second test set,SET2, is representative of completely automatic
segmentation. It is also 1 hour in length, but is not acoustically
balanced. Instead, entire portions of shows were selected so that the
segments would be time adjacent and so that the reference transcript
could be easily assembled. This test set was used to quickly run
experiments on automatic segmentation. Table 2 shows how many
words occur for each acoustic condition in each of the short test sets.

SET1 SET2
All 11408 10520
F0 2875 2976
F1 3133 3559
F2 1363 961
F3 904 527
F4 1358 1195
F5 443 299
FX 1332 1003

Table 2: Number of words per acoustic condition for short develop-
ment test sets.

4.1. Mixture Variation
The evaluation system uses fully-continuous acoustic models with
approximately 6000 senonically-tied states. Each state is a mixture
of a number of diagonal-covariance Gaussian densities. The number
of Gaussian components was varied from 16 to 20 per state for the
full-bandwidth acoustic models. The Sphinx-3 decoder was run on
SET1 with each set of acoustic models, holding all other parameters

constant. The word error rate results from both the Viterbi decoder
stage (vit) and the best path search of the word lattices (dag) are
shown in Table 3. Since only the full-bandwidth models were used,
the F2 results are not optimal. However, we see that across all
conditions, the models with 20 mixture-components per state provide
superior results.

16 20
vit dag vit dag

All 30.4 29.1 29.4 28.0
F0 18.4 16.7 18.4 15.5
F1 27.5 25.9 26.3 25.3
F2 45.7 43.7 45.1 43.6
F3 32.6 31.4 30.4 30.4
F4 27.3 28.1 25.9 27.8
F5 34.5 33.6 33.4 30.2
FX 47.3 46.7 45.9 43.5

Table 3: Word error rate (%) onSET1 for different numbers of
Gaussian densities per state.

4.2. Vocabulary Optimization
Three Good-Turing discounted trigram backoff language models
were built with 40k, 51k and 64k vocabularies. In each case, the
vocabulary was chosen from the most frequently occurring words in
the Broadcast News language model training data, as well as all of
the words from the 1995 Marketplace training data and 355 names
from the acoustic training data speaker database. The Sphinx-3 de-
coder was run onSET1 with each language model, holding all other
parameters constant. Word error rate results are shown in Table 4.
Overall, the 64k language model provided a slightly better result than
the 51k or 40k language models.

40k 51k 64k
All 29.5 29.3 29.2
F0 18.5 18.5 18.7
F1 26.3 26.5 26.3
F2 41.7 41.2 40.9
F3 30.3 30.0 29.3
F4 28.5 27.2 27.3
F5 36.1 35.7 35.4
FX 46.8 46.2 46.5

Table 4: Word error rate (%) onSET1 for different language model
vocabularies.

4.3. Language Model Smoothing
Two language models were built using different smoothing tech-
niques. The first model was a 51k Good-Turing discounted tri-
gram backoff language model[2], and the second a 51k Kneser-Ney
smoothed trigram language model[3]. The Sphinx-3 decoder was
run onSET1with each language model, holding all other parameters
constant. Word error rate results are shown in Table 5. The Good-
Turing discounted backoff model provided superior performance on
this test set.

4.4. Compound words
In an effort to establish how the modeling of compound words,
which are phrases and acronyms considered as one unit, affects



G-T K-N
All 29.3 29.8
F0 18.5 19.2
F1 26.5 27.2
F2 41.2 41.5
F3 30.0 31.0
F4 27.2 27.4
F5 35.7 36.8
FX 46.2 46.2

Table 5: Word error rate (%) onSET1 for different language model
smoothing strategies.

recognition performance, four different compound word scenarios
were investigated. First, the decoder was run with no compound
words in the dictionary or language model (NO). Next, the decoder
was run with a list of 355 phrases and acronyms in the dictionary
only (DT). The decoder was altered to retrieve the necessary language
model scores for each word in the compound word phrase, but only
one acoustic score was applied. Then, the decoder was run with the
list of compound words in the dictionary and in the language model
(LM). In this case, the compound words were modeled as one unit
throughout the entire recognition process. Finally, the decoder was
run with a shortened list of compound words (DT2) in the dictionary
only. This short list was made up of 30 phrases that were believed
to be the most acoustically different when occurring together than
when occuring in separate, different contexts.

Word error rate results for two different tests are shown in Table 6.
The first test was run on the full 4-hour development test set with a
40k language model. The second test was run with a 51k language
model onSET1 with a different set of acoustic models than the
first test. Therefore, the results are not directly comparable across
tests. Additionally, in some cases narrowband acoustic models were
used for the automatically-labeled telephone utterances, while in
other cases the full-bandwidth models were used. As a result, no
F2 results are reported, and theAll row does not include the F2
condition. Overall, it does not appear that modeling the long set of
phrases in the dictionary or in the language model helped recognition.
Having the short list of phrases present in the dictionary may help
recognition slightly. No compound words were used in the final
evaluation system.

Test1 Test2
NO DT DT2 DT LM

All, no F2 33.1 33.2 32.9 30.7 30.6
F0 21.2 21.3 21.2 19.9 19.2
F1 30.5 30.3 30.1 28.6 29.4
F3 40.3 41.2 40.3 35.0 34.7
F4 34.5 34.4 34.6 30.7 30.8
F5 38.7 38.7 38.6 38.6 38.8
FX 65.7 66.6 65.8 53.0 52.2

Table 6: Word error rate (%) for different compound word modeling
strategies.

4.5. Segmentation and Context
Automatic segmentation of the broadcast news audio does not guar-
antee that break points will be chosen at linguistic boundaries.
An automatically-segmented utterance may begin or end anywhere

within a sentence, or occasionally within a word. Likewise, an
utterance may contain a sentence boundary internally.

In order to investigate the effects of automatic segmentation and
language model sentence-boundary modeling on word error rate,
three different 51k-vocabulary language models were tested with
and without hypothesized context. The first language model, noted
byS, is a trigram backoff language model trained on language model
training text annotated with sentence-boundary tokens. The second
language model,XB, contains the sentence-boundary tokens as well
as cross-boundary trigrams [7], which are meant to help model the
case where sentence boundaries occur inside of an utterance. The
third model,NS, is built from the training text without sentence-
boundary tokens.

Each model is used to decodeSET2using an automatically generated
segmentation. In the standard case, the beginning of each utterance
is assumed to transition out of the begin-of-sentence token<s>
and transition into the end-of-sentence token</s> at the end of the
utterance. In thecontextcase, noted by+C, the last two hypothesized
words of a preceding utterance are given as trigram context to the
current utterance if the preceding utterance occurs just before the
current utterance in time. If no utterance immediately precedes the
current utterance in time, then the<s> token is given as the context.
In either case, no end-of-sentence transition is assumed.

The word error rate results of decodingSET2 with these different
configurations are shown in Table 7. Overall, the standard technique
of modeling the begin-of-sentence token and assuming the end-of-
sentence token provided the lowest word error rate. Introducing two
words of context instead of transitioning out of the begin-of-sentence
token did not significantly affect word error rate.

S S+C XB XB+C NS NS+C
All 32.0 32.1 32.6 32.7 32.3 32.3
F0 24.6 24.7 25.5 25.7 24.5 24.4
F1 29.2 29.1 29.3 29.3 29.9 29.8
F2 35.9 35.5 34.9 34.5 35.7 35.5
F3 54.3 57.3 57.5 58.3 57.9 57.9
F4 28.2 28.6 28.5 29.2 27.5 27.7
F5 36.5 37.5 36.5 37.1 38.5 38.1
FX 51.4 51.2 53.6 53.4 51.4 51.5

Table 7: Word error rate (%) for different sentence-boundary mod-
eling techniques.

4.6. N-best Rescoring
The N-best rescoring stage of the recognition process involves gen-
erating the 500 most-likely hypotheses for each utterance from the
Viterbi word lattice. The hypotheses are rescored using the acoustic
score from the lattice, a new language model score, and a word in-
sertion penalty. A series of experiments was conducted to determine
the best language model to use during rescoring.

Good-Turing discounted trigram and 4-gram models, and Kneser-
Ney smoothedtrigram and 4-gram models were built from the Broad-
cast News training data and the Marketplace training data, including
all bigrams and trigrams. All four models were used to rescore
500-best lists from the 1-hourSET1 and the entire 4-hourDEV97
test sets. The word error rate results after rescoring are shown in
Table 9. The first line of the table shows the rescoring results us-
ing the language model scores present in the lattices, which were
generated from a Good-Turing discounted trigram language model



Pass All F0 F1 F2 F3 F4 F5 FX
pass1, vit 26.9 17.6 25.3 36.7 35.4 35.9 38.0 54.8
pass1, dag 25.8 17.0 23.8 35.0 35.1 35.3 37.2 53.0
pass2, vit 25.8 17.0 24.9 34.1 34.8 33.2 33.4 54.1
pass2, dag 24.9 16.0 23.8 33.1 35.5 33.0 34.3 52.5
N-best rescore 24.1 15.5 22.9 32.5 33.3 31.2 33.0 51.6
pass3, vit 25.4 16.7 24.7 33.9 34.1 32.6 33.2 52.3
pass3, dag 24.6 15.9 24.0 32.4 34.4 32.4 34.0 51.4
N-best rescore2 24.0 15.5 22.8 32.2 33.4 30.8 33.0 50.3

Table 8: Summary of evaluation word error rates (%) by stage.

that excluded singleton trigrams. For both test sets, the Kneser-Ney
smoothed 4-gram model performs the best.

Model SET1 DEV97
Original score 29.7 35.1
G-T 3-gram 29.7 34.9
G-T 4-gram 29.0 34.5
K-N 3-gram 29.4 34.8
K-N 4-gram 28.6 34.2

Table 9: N-best rescoring word error rates (%) for different language
models.
Individual Kneser-Ney trigram and 4-gram language models were
then built from language model training data from a variety of
sources: 130 MW of Broadcast News, 1MW of Broadcast News
acoustic training data, 3MW of Switchboard data, 115MW of Hub-3
AP data, 100MW of Hub-3 Wall Street Journal data and 30MW of
1995-only data from Hub-3 excluding Wall Street Journal. Each of
these models was interpolated either at the word or sentence level,
and the new language scores were used to rescore the 500-best lists.
Interpolation weights were chosento optimize the perplexity of held-
out data. Results are shown in Table 10. In this case, word-level
interpolation slightly outperforms sentence-level interpolation. A
comparison of these results with the Kneser-Ney results from Ta-
ble 9 shows that using multiple language models does improve per-
formance when rescoring with trigrams, but there is little difference
between using just the Broadcast News 4-gram and interpolating the
scores from the six different 4-gram language models.

Model SET1 DEV97
3-gram, word 29.0 34.4
4-gram, word 28.5 34.0
3-gram, sent 29.1 34.6
4-gram, sent 28.6 34.2

Table 10: N-best rescoring word error rates (%) when interpolating
language models from different sources.

5. EVALUATION RESULTS SUMMARY
The Sphinx-3 evaluation results at each stage of processing are shown
in Table 8. The final system word error rate was 24.0%. The
intermediate word error rates were 25.8% at the end of the first pass
and 24.1% at the end of the second pass. The third pass of the
recognition system did not significantly decrease the word error rate;
two passes of the recognizer would have been sufficient.
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