ADAPTATION AND COMPENSATION: APPROACHES TO MICR OPHONE AND
SPEAKER INDEPENDENCE IN AUTOMATIC SPEECH RECOGNITION

Evando B. Gouvéa, &dio J Moreno, Bhiksha Raj, Thomas M. Sullivan, anchiid M. Stern

Department of Electrical and Computer Engineering
School of Computer Science
Carngjie Mellon Unversity
Pittsturgh, A 15213

ABSTRACT

This paper describes recentoefs by the CMU speech group to
address the important problems ofustmess to changes inven
ronment and speak Results are presented in the cahtf the
1995 ARFA common Hub 3 ealuation of speech recorded
through diferent microphones at d&rent signal-to-noise ratios
(SNRs). for speech that is considered to be of high quality we
addressed the problem of sperkariability through a spea&k
normalization technique.of speech recorded ater SNRs, we
used a combination of gimonmental compensation techniques
previously developed in our group. Speak normalization
reduced the relaté error rate for clean speech by 3.5 percent, and
the combination of enronmental compensation with the use of
noise-corrupted speech in the training process reduced theeelati
error rate for noisy speech by 54.9 percent.

1. INTRODUCTION

Considerable progress has been made in the fieldgef acaklu-

lary speech recognition in recent years. Good recognition accu-
ragy, however, is far more dificult to achiee when the incoming
speech has been recorded in aneask acoustical @ironments.

For example, a compact implementation of SPHINX-II [3]
achieved an error rate of 6.5% in “cleanv@nments” using the
evaluation set of the 1994 ARFRcommon 5000-wrd CSR galu-
ations. fer speech recorded through “secondary” microphones
providing lower SNRs, the best error rate obtained withoyt an
ervironmental compensationas 12.4% [4].

The doubling of error rate obsex here is due to factors: (1)
a mismatch between the recording conditions of the training

The 1995 ARR Hub 3 task was designed tovaluate the perfor-
mance of speech recognition systems on unlimitechulary

read speech, both in clean and noisy recording conditions. Speech
was recorded in sessions of 15 sentences usiagetyof micro-
phones, one of whichas a Sennheiser 410 close-talking micro-
phone (representing a “clean” recordingieonment). Although
session boundaries were kmo, it was not knavn a priori
whether a gien session &s recorded using a noisy microphone

or using the close-talking microphone.

In this paper we describe and compare the performance of a series
of training and compensation procedures that weveldped to
improve the recognition accunaof the CMU SPHINX-II speech
recognition system, especially in noisy recordingramments, in
the contet of the 1995 ARR Hub 3 task. & also describe our
attempts at compensating for thariability between spea&ks
using a speak normalization technique that is applied to clean
speech and by using session-wise speaklaptation for speech
recorded in noisy conditions. Alkperiments were performed
using the deelopment andwaluation sets of the 1995 ARPub

3 speech corpus.

In Section 2 we describe the technique used to separate clean
speech from noisy speech, thesf step in the processing of
incoming speech. In Section 3 we describe our approach to the
recognition of clean speech, namedpeakr normalization. In
Section 4 we describe in detail the compensation techniques used
for the noisy speech. These techniqueslire cepstra compensa-
tion approachese(g. the CDCN algorithm) as well as methods
that modify the statistics of the internal distiions of the HMMs
(e.g.the SAR algorithm). In Section 5 we present and discuss
official results for the 1995 ARPHub 3 task. W also describe in

this section some additionatgeriments thatwaluate the perfor-
mance of the SAR algorithm and direct Baum-§lch adaptation.

speech and the speech being recognized, and (2) the inherent loss

of information due to the presence of noise. While information
lost because of addr noise is in principle irretriable, it is pos-
sible to reduce the mismatch between training and testing condi-
tions. Practically all compensation methods are aimed at
accomplishing reduction in mismatch.

A second major source of error indenocahulary speech recog-
nition systems isariability among speaks. This problem is usu-
ally approached by either modifying the internal models of a
recognition system to adapt them to arepealkr or by normaliz-
ing the representation of speech from arspealer to match
more closely those from prieusly-defined prototype spestis.

2. SEFARATION OF CLEAN AND
NOISY SPEECH

Since it vas not knan a priori whether a gien session of speech
was recordeder the close-talking microphone ovey some
other (more noisy) microphone, incoming speech invargses-
sion was frst separated into twclasses, “clean” (representing
speech from the Sennheiser 410 microphone) and “noisy” (repre-
senting all other speech). Classdtion was performed on the
basis of a single feature, thefdience between the minimum and

maximum \alues of the zefd-order cepstral coBfient during the
course of an utterance.



The zerd-order cepstral cofifient is a function of the engy in

the frame. Therefore, the minimuralue of the zef8-order ceps-
tral coeficient in an utterance is a function of the noise gper
while its maximum is a function of the signal eperit follows
that the diference between the maximum and the minimum
zerdM-order cepstral coéitients is a measure of the signal-to-
noise ratio (SNR).

The classifier modeled the zEkorder cepstral coB€ient using a

tive dervation of the Gaussian mixture model and thevdéion of
the HMMs.

During recognition, the bestasping function is obtained for each

new speakr and the wrped utterances are recognized using the
previously-derved HMMs.

3.1. Training

Gaussian mixture density with 8 components. Separate modelsAll experiments performed during system training used thé W

were created for noisy and clean speech, usingldpment set

Street Journal S1-284 corpus. The 284 spesaln this corpus were

data. The test set utterances were classified as clean or noisy base@artitioned into tw subsets. Each subseasvalternately wrked

on a maximum liklihood criterion.

The algorithm achieed perfect classifation of the data in the

development set, when the clagsition was performed on a ses-
sion basisi(e. when all 15 sentences from a/gin session were
used for classifation). When the clasgifition was performed on

a persentence basis, the classification erraswnly 0.33%.

Sessions classéfd as being “clean” were processeddaliéntly
from sessions clasgfl as being “noisy”, as is described in Sec-
tions 3 and 4, respeetily.

3. PROCESSING OF CLEAN SPEECH

Spealer variability is a major source of performanceytiation

on speech recognition systems, which is/wpealkr-dependent
speech recognition systems typically outperform spegidepen-
dent systems. Speaknormalization techniques attempt to address
this problem by mapping features representing speech fromv a ne
spealer to those of a pviously-determined standard speakor
example, systems that use a bandpdss foank to accomplish
peripheral frequencanalysis can partially account for speak
variability by warping the center frequencies of the analysis filters.
The approach we adopted operates in siméahibn, as we mod-
ify the center frequencies of the triangular weighting functions
used to devie the spectral engy estimates in narwofrequeny
bands from which mel-frequencepstral coditients are devied

by performing an iverse Burier transformé.g. [2]). We eploit
such warping functions in an attempt to acreespea&r normal-
ization.

The spea&r normalization algorithm we implemente@svprei-
ously described by Rott al.[6] and Wegmannet al.[7], and was
motivated by a series of seminaiperiments by Coheet al. [2].
The first step in our implementation consists of an iteaterva-

on, finding the optimal wrping function for each speakand
computing the Gaussian mixture model that bigtstdf the opti-
mally-warped speades in that subset. The optimaakping func-
tions for the speas in one set were estimated using the Gaussian
mixture model produced with the other sete Yartitioned the
training set in an attempt te@d the fine tuning of arping func-
tions to the training set..
Ul
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Twelve frequeng-warping functions were chosen arbitrariljney

are linear at lev frequencies andxponentially-shaped at higher
frequencies. Figure 1 depictsdvextreme varping functions used

in this procedure. The optimalanping function for each of the
spealers in a subsetag chosen in the folling manner: all utter-
ances by a particular speakwere varped using each of the 12
pre-selected arping functions; the arping function that maxi-
mized the weragea posteriorilikelihood of the incoming cepstra
was selected as the optimaanping function for that speak this

a posteriorilikelihood was computed on a 64-component Gauss-

tion of the Gaussian mixture model that statistically represents a ian mixture distrilntion produced from all the normalized training

prototype spead. At each step in this iteration, wiest compute
the Gaussian mixture model for the prototype speakd then
find the optimal warping function for each speak This optimal
warping function is chosen to be the one that maximizea pues-
teriori log-likelihood computed using this Gaussian mixture
model. After choosing the optimalanping function for all speak-
ers in the set, we re-compute the Gaussian mixture madel, f
new optimal warping functions based on thewn&aussian mix-
ture model, and proceed in this manner untilvagence is
achiezed. Conermgence in this case means that for conseeutir-
ations the same optimalasping function is chosen fovery
spealer.

The second step of the implementation concerns theatien of
spealer-normalized HMMs from the optimally-arped training

data in the other subset. Figure 2 illustrates the training procedure.

The procedure described here relies on Kisence of a Gaussian
mixture model representing the prototype normalized spe@i
bootstrap the training procedure we used all theanped data in
one of the subsets to construct an initial Gaussian mixture distrib
tion. Warping functions and Gaussian models were iteedfi
derived in the subsequent normal training procedure.

Corvergence is achieed when in success iterations all speaks
are matched toxactly the same arping function as in the prie
ous iteration. When ceergence is achied both the optimal
warping associated with each speaknd the Gaussian mixture
models for the tw subsets do not changeyanore with further
iterations. At the end of the itenadi process, we kia two Gauss-

set. The training steps of our implementation consist of the itera- ian mixture models, and the choices afrping function for each
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Figure 2.Block diagram of the training process for sprakor-
malization.

spealer in both partitions of the training data. The estimation of
the Gaussian mixture modebw performed onerfal time on the
entire set of data using the selectetping functions to produce a
single Gaussian mixture model thaaswused for the recognition
phase.

Figure 3 shars the number of speats for which the best-matched
warping function changes from iteration to iteration, as a function
of iteration numberCurwes for each of the twsubsets used for
training are plotted separately
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the normalization algorithm.

As an informal measure of the consisten€the algorithms con-
vergence, we cheek for possible correlations between therpy
ing functions chosen for a speakand the spe&k’s gender
Figure 4 shws the distriitions of labels associated with each of
the warping functions, separated by speragenderLabels repre-
sent varping frequencies linearly spaced along the frequanis.
We can see a clear separation of these disioibs, with medians
towards one end for male speak and twards the other end for
female speadrs.

With optimal warping functions iteratiely selected for each
spealer, we created HMMs for a generic normalized speakhe
number of iterations of the Baumél¢h algorithm vas chosen
based on ward error rate. This progression is wimoon Figure 5.
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Figure 4.Spealer gender distrilted by labels. Labels represe
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Figure 5.Word error rate with iterations of Baumelgh. Note
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3.2. Testing

Using the inal Gaussian mixture model obtained in the training
process, we chose theagping function that maximized the dik-
hood across all sentences in the session for eachespedke test
set. The mel-cepstral parametrization of the spealking this
warping function vas then used to for recognition.

4. PROCESSING OF NOISY SPEECH

Our approach for recognizing speech that is idexatibs being
noisy is based on the premise that the best recognition agésirac
obtained when the training and testing conditions are comparable.
We attempted to achie this first by training HMMs to model the
noise conditions of the noisy speech, and second by further adapt-
ing these “noisy” HMMs on a session basis using a combination of
CDCN [1] and SFR [5].

4.1. Training “Noisy” HMMs

Two sets of acoustic models, representing males and females, were
generated. These models were obtained from the SI-284 WSJO and
WSJ1 corpora, corrupted by addiinoise at a global SNR of 12.5

dB. The noise used to corrupt the clean speeshaslored to sim-

ulate the noise conditions of thevétopment test set. The addéi



noise vas generated by passing white noise through a 512-point to train the “noisy” HMMs. This causes the algorithm to map an

FIR filter that had a pwer spectrum equal to the estimatedvpo noisy sentence to a “standardve@onment with a 12.5-dB SNR.
spectrum of the background recording noise (Figure 6). 125dB
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% STAR: STAR is an algorithm that uses stereo pdirs,sentences

o recorded simultaneously in the testingZieanment and in the

training ernironment. Stereo sets of speech from the training en

'250 2000 4000 6000 8000 ronment and noisy CDCN-normalized speech were used to adapt

Frequency (Hz) the means and variances of the HMM distriliion using SAR.

Figure 6.Pawer spectrum of the colored noise used to conti Because appropriate stereo recordings of the noisy and clean
nate the WSJ training set. speech in this dataset are nesitable, pseudo-stereo pairs were
generated to simulate the conditions of the CDCN-normalized
noisy data (Figure 8). Speiciilly, 100 utterances of clean speech
from WSJO were corrupted to the noise and channel conditions of
the session. Wused the noise samples\yided by NIST to esti-
mate the spectrum of the noise. The channel characteristics were
estimated by computing the fiifence between the mean cepstral
coeficients of the actual 15 sentences in a session and the corre-

The paver spectrum of the background noisasvestimated as the

average of the p@er spectra of the 3-second samples of ambient
noise supplied by NIST for each of the sperakand microphones

in the deelopment set normalized by the estimate of the channel
spectrum for that microphone. The transfer function of the channel
spectrum for a microphoneas estimated as the ratio of thea sponding means from the 12.5-dB training data. This corrupted
age paver spectrum of the samples of speech recorded through the ge0chy \gs then compensated to the 12.5-dB reference statistics

microphone diided by the eerage pwer spectrum of samples of usin : )
X . g CDCN. These data represented thevatpnt of the CDCN
speech from Microphone A in thexddopment set. The 12.5-dB compensated noisy data in our pseudo-stereo set.

SNR noise-corruptedlés were then used to obtain HMMs for

speech at a nominal SNR of 12.5 dBueriterations of the Baum-  The same 100 clean utterances from WSJO were also corrupted by
Welch algorithm were performed to produce gendiependent additive noise at an SNR of 12.5 dB in a manner identical to that
HMMs used to obtain data for training the 12.5 dB HMMs. These data
represented the trainingsgronment counterpart of the noise-cor-

4.2. Ervironmental Compensation rupted CDCN-compensated data in the “stereo” set.

) ) ] The combination of the corrupted CDCN-compensated utterances
The session based\eronmental compensation procedurasv and the corresponding 12.5-dB corrupted utteraneessused to
performed in tw steps. compute n& HMMs from the original (12.5-dB) HMMSs using

CDCN: The frst stage of compensation consisted of running the STAR.

testing utterances through CDCN [1]. CDCN (Figure 7) is a maxi-
mum-likelihood algorithm that uses a generic model of umkno
additive noise and unkmm linear fltering for the noisy speech.
The algorithm attempts to estimate the parameters of the noise and

filter that best map a set of reference statistics, normally the statis- | Noise & Channel (HMM STAR>

Noise Sampley
Noisy Speech

tics of the speech used to train the HMMs, onto the noisy speech. Estimation 4
The cepstrum of the compensated speech is then estimated from
the noisy speech using an MMSE criterion [1]. Contamination » CDCN
In this particular implementation of CDCN, the reference statistics
used by the algorithm were computed on the 12.5-dB speech used Clean Speec Contaminate A4
(WSJO0) at12.5 dB STAR

Figure 8.Block diagram of the HMM deration using SAR.



In recognizing n& speech, the incomingaweform is compen-
sated using CDCN and then recognized using theRs3dapted
models.

5. SYSTEM PERFORMANCE ON THE 1995
ARPA HUB 3 EVALUATION DATA

5.1. Baseline Brformance

The oficially-reported results for the primary test set for the 1995
ARPA CSR Hub 3 ealuation were 13.9% and 29.2%oxd error
rates for the clean and noisy subsets of aduation data, respec-
tively. We also ran seeral additional eperiments to ealuate the
improvements in recognition error rate pided by each of the
components of our compensation stggteand these results are
summarized in dble 1 bela.

Recognition times for the H3 task were about 70 times real time
for noisy speech and 29 times real time for clean speech. This
includes the time required to select the optimaiping in the case

of clean speech, and the time required for CDCN-compensation
and SAR adaptation in the case of the noisy speech. If we did not
adapt the 12.5 dB-HMMs using AR, (i.e. if we used only a com-
bination of CDCN and the 12.5 dB models), the recognition times
for noisy speech were only about 36 times real time.

5.2. Rerformance without Adaptation to
Spealers and Ervironments

To evaluate the impneement preided by the spea-normaliza-
tion procedure we recognized the clean speech ofvtleation
set on gendespecifc models generated without speakiormal-
ization. W& also recognized the noisyaduation data using clean
speech HMMs and on the 12.5-dB HMMs teatuate the
improvement obtained by using the 12.5-dB modeks the base-
line system. These and other results describedvizsie tablated

in Table 1. It vas found that the speatknormalization procedure
used for the waluation reduced the relaé error rate for clean
speech by 3.5 percent. Bronmental compensation reduced the
relative error rate for noisy speech by 11.2 percent and the combi-
nation of noise-corrupted HMMs andwronmental compensa-
tion reduced the relaté error rate for noisy speech by 54.9
percent.

5.3. Impact of Pseudo-Stexo Data Used in
STAR Adaptation

To evaluate the impreement obtained by adapting the 12.5-dB
models to the CDCN-compensated speech we xgeranents
without using the SAR algorithm (.e. we directly recognized the
CDCN-compensated speech using the 12.5 dB HMMs). Surpris-
ingly, the recognition accurgavithout STAR was found to be
greater than that obtained usingA&RTadaptation of the models.

We attribute this anomaly to the@€t that our method of generating
pseudo-stereo pairs for B8R adaptation w&s imperfect. While the
pseudo-stereo pairs were obtained by corrupting clean speech with

estimated channel and noise conditions for the session to be recog-

nized, this corruption as done in the mel-frequentog-spectral
domain where the components are actually obtained byratieg
the paver spectrumer the Mel frequencbands. ® confirm this
hypothesis we later conducted a test in which th&eRsadaptation

of the models was performed with “perfect” stereo pairs calculated
from direct comparisons of the clean speech and noisy speech in
the ealuation sets. (According to the rules of thalaation, this

side information as not &ailable to the recognition system.) The
recognition error rate obtained with perfect stereo, 20.6&, w
considerably ler than the rate obtained with the pseudo-stereo
pairs.

5.4. Baum-Welch Session Adaptation

After the oficial evaluations were completed we performed a
series of “session-adaptatiorXperiments in which we adapted
the 12.5-dB HMMs to each speats session using the Baum-
Welch algorithm. Unlile other recognition systems used in the
1995 Hub 3 ealuation, SPHINX-II uses a semi-continuous HMM
structure with only 256 elements in its codebook of distiiins
[3]. This small number of parameters reakthe use of clustering
techniques unnecessary

Like most other adaptation or training techniques, BaustchV
session adaptation requires orthographic transcriptions. Since tran-
scriptions are notwailable for test data, we generated the tran-
scriptions automatically by recognizing the noisy speech insta f
pass using the non-adapted 12.5-dB HMM#hwhese transcrip-
tions we follaved the normal adaptation procedure to produce a
new set of adapted meareetors and cgariance matrices. ih
these ne statistics we performed recognition on the same data
used for adaptation. The procedure could be iteratedvasume
more accurate transcriptions were produced with eastseeof
means andariances. Therfal recognition error rate obtained in
this case ws 23.3% for the noisy subset and 12.4% for the clean
subset of the 1995 H¥&uation set, as sthm in Table 1.

Since transcriptions generated by the decoder avéabby error-
ful, we estimated the Weer bound in error rate that can be pro-
vided by this technique by running a secorgegiment in which
we assume that the Baumelth adaptation procedure could raak
use of “perfect” knwledge of the correct transcriptions. In these
experiments we adapted the means aamibwmces of all the Gauss-
ians of the 12.5-dB HMMs, using all 15 sentences irvargses-
sion and the correct transcriptions. The recognition eras w
obsenred to stabilize after 5 iterations of BauneMh adaptation
to 16.4% and 8.6%, respaatly, for the noisy and clean subsets of
the 1995 H3waluation set.

Clean Noisy
Speech Speech
Clean-speech HMMs, no speal 14.4% 64.8%
or environment adaptation
Clean-speech HMMs, with speakr| 13.9% -
normalization (official result)
12.5-dB HMMs, no ervironment - 32.9%
adaptation
12.5-dB HMMs, CDCN and SRR - 29.2%
(official result)
12.5-dB HMMs, CDCN only - 27.5%
12.5-dB HMMs, STAR with “per- - 20.6%
fect” stereo information
Baum-Welch adaptation with 12.4% 23.3%
decodergenerated transcriptions




Clean Noisy
Speech Speech
Baum-Welch adaptation with 8.6% 16.4%
“perfect” transcriptions

Table 1: Error rates on the 1995 ARRHub 3 e/aluation using
alternate speak and emironment adaptation strages. Ofi-
cially-reported scores for the primary tasks arevshio bold fice.
Contrast conditions labelled “perfect” include side information not
available in the actuaMaluation.

6. SUMMARY AND CONCLUSIONS

In this paper we describesral procedures that hia been
employed to ameliorate the adise efiects of unknan micro-
phones in noisy afironments and speak variability in lamge-
vocahulary speech recognition systems. The training and adapta-
tion procedures used for thefiofal ARPA evaluations preided
relative decreases in error rate of 3.5 and 54.9 percent for clean
and noisy speech, respeetly.

Despite the considerable beitethat can be prxided by comen-
tional speakr and emironment adaptation, we also obssivthat

the greatest impk@ment in recognition accunacan be obtained

by simply re-training the HMMs using techniques such as session-
based Baum-\&ich adaptation. Nertheless, Baum-®&lch adap-
tation is not a viable alternaé for most systems that require real-
time operation, and for such systems a combination of a well-
trained HMM and a compensation technique such as CDCN
would provide the best recognition accuyac
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