
ABSTRACT

This paper describes recent efforts by the CMU speech group to
address the important problems of robustness to changes in envi-
ronment and speaker. Results are presented in the context of the
1995 ARPA common Hub 3 evaluation of speech recorded
through different microphones at different signal-to-noise ratios
(SNRs). For speech that is considered to be of high quality we
addressed the problem of speaker variability through a speaker
normalization technique. For speech recorded at lower SNRs, we
used a combination of environmental compensation techniques
previously developed in our group. Speaker normalization
reduced the relative error rate for clean speech by 3.5 percent, and
the combination of environmental compensation with the use of
noise-corrupted speech in the training process reduced the relative
error rate for noisy speech by 54.9 percent.

1. INTRODUCTION

Considerable progress has been made in the field of large vocabu-
lary speech recognition in recent years. Good recognition accu-
racy, however, is far more difficult to achieve when the incoming
speech has been recorded in an adverse acoustical environments.
For example, a compact implementation of SPHINX-II [3]
achieved an error rate of 6.5% in “clean environments” using the
evaluation set of the 1994 ARPA common 5000-word CSR evalu-
ations. For speech recorded through “secondary” microphones
providing lower SNRs, the best error rate obtained without any
environmental compensation was 12.4%  [4].

The doubling of error rate observed here is due to two factors: (1)
a mismatch between the recording conditions of the training
speech and the speech being recognized, and (2) the inherent loss
of information due to the presence of noise. While information
lost because of additive noise is in principle irretrievable, it is pos-
sible to reduce the mismatch between training and testing condi-
tions. Practically all compensation methods are aimed at
accomplishing reduction in mismatch.

A second major source of error in large vocabulary speech recog-
nition systems is variability among speakers. This problem is usu-
ally approached by either modifying the internal models of a
recognition system to adapt them to a new speaker or by normaliz-
ing the representation of speech from a new speaker to match
more closely those from previously-defined prototype speakers.

The 1995 ARPA Hub 3 task was designed to evaluate the perfor-
mance of speech recognition systems on unlimited-vocabulary
read speech, both in clean and noisy recording conditions. Speech
was recorded in sessions of 15 sentences using a variety of micro-
phones, one of which was a Sennheiser 410 close-talking micro-
phone (representing a “clean” recording environment). Although
session boundaries were known, it was not known a priori
whether a given session was recorded using a noisy microphone
or using the close-talking microphone.

In this paper we describe and compare the performance of a series
of training and compensation procedures that were developed to
improve the recognition accuracy of the CMU SPHINX-II speech
recognition system, especially in noisy recording environments, in
the context of the 1995 ARPA Hub 3 task. We also describe our
attempts at compensating for the variability between speakers
using a speaker normalization technique that is applied to clean
speech and by using session-wise speaker adaptation for speech
recorded in noisy conditions. All experiments were performed
using the development and evaluation sets of the 1995 ARPA Hub
3 speech corpus.

In Section 2 we describe the technique used to separate clean
speech from noisy speech, the first step in the processing of
incoming speech. In Section 3 we describe our approach to the
recognition of clean speech, namely, speaker normalization. In
Section 4 we describe in detail the compensation techniques used
for the noisy speech. These techniques involve cepstra compensa-
tion approaches (e.g. theCDCN algorithm) as well as methods
that modify the statistics of the internal distributions of the HMMs
(e.g.the STAR algorithm). In Section 5 we present and discuss
official results for the 1995 ARPA Hub 3 task. We also describe in
this section some additional experiments that evaluate the perfor-
mance of the STAR algorithm and direct Baum-Welch adaptation.

2. SEPARATION OF CLEAN AND
NOISY SPEECH

Since it was not known a priori whether a given session of speech
was recorded over the close-talking microphone or over some
other (more noisy) microphone, incoming speech in a given ses-
sion was first separated into two classes, “clean” (representing
speech from the Sennheiser 410 microphone) and “noisy” (repre-
senting all other speech). Classification was performed on the
basis of a single feature, the difference between the minimum and
maximum values of the zeroth-order cepstral coefficient during the
course of an utterance.
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The zeroth-order cepstral coefficient is a function of the energy in
the frame. Therefore, the minimum value of the zeroth-order ceps-
tral coefficient in an utterance is a function of the noise energy,
while its maximum is a function of the signal energy. It follows
that the difference between the maximum and the minimum
zeroth-order cepstral coefficients is a measure of the signal-to-
noise ratio (SNR).

The classifier modeled the zeroth-order cepstral coefficient using a
Gaussian mixture density with 8 components. Separate models
were created for noisy and clean speech, using development set
data. The test set utterances were classified as clean or noisy based
on a maximum likelihood criterion.

The algorithm achieved perfect classification of the data in the
development set, when the classification was performed on a ses-
sion basis (i.e. when all 15 sentences from a given session were
used for classification). When the classification was performed on
a per-sentence basis, the classification error was only 0.33%.

Sessions classified as being “clean” were processed differently
from sessions classified as being “noisy”, as is described in Sec-
tions 3 and 4, respectively.

3. PROCESSING OF CLEAN SPEECH

Speaker variability is a major source of performance degradation
on speech recognition systems, which is why speaker-dependent
speech recognition systems typically outperform speaker indepen-
dent systems. Speaker normalization techniques attempt to address
this problem by mapping features representing speech from a new
speaker to those of a previously-determined standard speaker. For
example, systems that use a bandpass filter bank to accomplish
peripheral frequency analysis can partially account for speaker
variability by warping the center frequencies of the analysis filters.
The approach we adopted operates in similar fashion, as we mod-
ify the center frequencies of the triangular weighting functions
used to derive the spectral energy estimates in narrow frequency
bands from which mel-frequency cepstral coefficients are derived
by performing an inverse Fourier transform (e.g. [2]). We exploit
such warping functions in an attempt to achieve speaker normal-
ization.

The speaker normalization algorithm we implemented was previ-
ously described by Rothet al.[6] and Wegmannet al.[7], and was
motivated by a series of seminal experiments by Cohenet al.  [2].
The first step in our implementation consists of an iterative deriva-
tion of the Gaussian mixture model that statistically represents a
prototype speaker. At each step in this iteration, we first compute
the Gaussian mixture model for the prototype speaker and then
find the optimal warping function for each speaker. This optimal
warping function is chosen to be the one that maximizes thea pos-
teriori  log-likelihood computed using this Gaussian mixture
model. After choosing the optimal warping function for all speak-
ers in the set, we re-compute the Gaussian mixture model, find
new optimal warping functions based on the new Gaussian mix-
ture model, and proceed in this manner until convergence is
achieved. Convergence in this case means that for consecutive iter-
ations the same optimal warping function is chosen for every
speaker.

The second step of the implementation concerns the derivation of
speaker-normalized HMMs from the optimally-warped training
set. The training steps of our implementation consist of the itera-

tive derivation of the Gaussian mixture model and the derivation of
the HMMs.

During recognition, the best warping function is obtained for each
new speaker and the warped utterances are recognized using the
previously-derived HMMs.

3.1. Training

All experiments performed during system training used the Wall
Street Journal SI-284 corpus. The 284 speakers in this corpus were
partitioned into two subsets. Each subset was alternately worked
on, finding the optimal warping function for each speaker and
computing the Gaussian mixture model that best fitted the opti-
mally-warped speakers in that subset. The optimal warping func-
tions for the speakers in one set were estimated using the Gaussian
mixture model produced with the other set. We partitioned the
training set in an attempt to avoid the fine tuning of warping func-
tions to the training set..

Twelve frequency-warping functions were chosen arbitrarily. They
are linear at low frequencies and exponentially-shaped at higher
frequencies. Figure 1 depicts two extreme warping functions used
in this procedure. The optimal warping function for each of the
speakers in a subset was chosen in the following manner: all utter-
ances by a particular speaker were warped using each of the 12
pre-selected warping functions; the warping function that maxi-
mized the averagea posteriori likelihood of the incoming cepstra
was selected as the optimal warping function for that speaker; this
a posteriori likelihood was computed on a 64-component Gauss-
ian mixture distribution produced from all the normalized training
data in the other subset. Figure 2 illustrates the training procedure.

The procedure described here relies on the existence of a Gaussian
mixture model representing the prototype normalized speaker. To
bootstrap the training procedure we used all the unwarped data in
one of the subsets to construct an initial Gaussian mixture distribu-
tion. Warping functions and Gaussian models were iteratively
derived in the subsequent normal training procedure.

Convergence is achieved when in successive iterations all speakers
are matched to exactly the same warping function as in the previ-
ous iteration. When convergence is achieved both the optimal
warping associated with each speaker and the Gaussian mixture
models for the two subsets do not change any more with further
iterations. At the end of the iterative process, we have two Gauss-
ian mixture models, and the choices of warping function for each
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Figure 1.Comparison of two frequency-warping functions used
in speaker adaptation.



speaker in both partitions of the training data. The estimation of
the Gaussian mixture model was performed one final time on the
entire set of data using the selected warping functions to produce a
single Gaussian mixture model that was used for the recognition
phase.

Figure 3 shows the number of speakers for which the best-matched
warping function changes from iteration to iteration, as a function
of iteration number. Curves for each of the two subsets used for
training are plotted separately.

As an informal measure of the consistency of the algorithm’s con-
vergence, we checked for possible correlations between the warp-
ing functions chosen for a speaker and the speaker’s gender.
Figure 4 shows the distributions of labels associated with each of
the warping functions, separated by speaker gender. Labels repre-
sent warping frequencies linearly spaced along the frequency axis.
We can see a clear separation of these distributions, with medians
towards one end for male speakers and towards the other end for
female speakers.

With optimal warping functions iteratively selected for each
speaker, we created HMMs for a generic normalized speaker. The
number of iterations of the Baum-Welch algorithm was chosen
based on word error rate. This progression is shown on Figure 5.

3.2. Testing

Using the final Gaussian mixture model obtained in the training
process, we chose the warping function that maximized the likeli-
hood across all sentences in the session for each speaker in the test
set. The mel-cepstral parametrization of the speaker using this
warping function was then used to for recognition.

4. PROCESSING OF NOISY SPEECH

Our approach for recognizing speech that is identified as being
noisy is based on the premise that the best recognition accuracy is
obtained when the training and testing conditions are comparable.
We attempted to achieve this first by training HMMs to model the
noise conditions of the noisy speech, and second by further adapt-
ing these “noisy” HMMs on a session basis using a combination of
CDCN [1] and STAR [5].

4.1. Training “Noisy” HMMs

Two sets of acoustic models, representing males and females, were
generated. These models were obtained from the SI-284 WSJ0 and
WSJ1 corpora, corrupted by additive noise at a global SNR of 12.5
dB. The noise used to corrupt the clean speech was colored to sim-
ulate the noise conditions of the development test set. The additive
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noise was generated by passing white noise through a 512-point
FIR filter that had a power spectrum equal to the estimated power
spectrum of the background recording noise (Figure 6).

The power spectrum of the background noise was estimated as the
average of the power spectra of the 3-second samples of ambient
noise supplied by NIST for each of the speakers and microphones
in the development set normalized by the estimate of the channel
spectrum for that microphone. The transfer function of the channel
spectrum for a microphone was estimated as the ratio of the aver-
age power spectrum of the samples of speech recorded through the
microphone divided by the average power spectrum of samples of
speech from Microphone A in the development set. The 12.5-dB
SNR noise-corrupted files were then used to obtain HMMs for
speech at a nominal SNR of 12.5 dB. Five iterations of the Baum-
Welch algorithm were performed to produce gender-dependent
HMMs

4.2. Envir onmental Compensation

The session based environmental compensation procedure was
performed in two steps.

CDCN: The first stage of compensation consisted of running the
testing utterances through CDCN [1]. CDCN (Figure 7) is a maxi-
mum-likelihood algorithm that uses a generic model of unknown
additive noise and unknown linear filtering for the noisy speech.
The algorithm attempts to estimate the parameters of the noise and
filter that best map a set of reference statistics, normally the statis-
tics of the speech used to train the HMMs, onto the noisy speech.
The cepstrum of the compensated speech is then estimated from
the noisy speech using an MMSE criterion [1].

In this particular implementation of CDCN, the reference statistics
used by the algorithm were computed on the 12.5-dB speech used

to train the “noisy” HMMs. This causes the algorithm to map any
noisy sentence to a “standard” environment with a 12.5-dB SNR.

Figure 7.Block diagram of the compensation model using
CDCN.

STAR:  STAR is an algorithm that uses stereo pairs,i.e. sentences
recorded simultaneously in the testing environment and in the
training environment. Stereo sets of speech from the training envi-
ronment and noisy CDCN-normalized speech were used to adapt
the means and covariances of the HMM distribution using STAR.

Because appropriate stereo recordings of the noisy and clean
speech in this dataset are not available, pseudo-stereo pairs were
generated to simulate the conditions of the CDCN-normalized
noisy data (Figure 8). Specifically, 100 utterances of clean speech
from WSJ0 were corrupted to the noise and channel conditions of
the session. We used the noise samples provided by NIST to esti-
mate the spectrum of the noise. The channel characteristics were
estimated by computing the difference between the mean cepstral
coefficients of the actual 15 sentences in a session and the corre-
sponding means from the 12.5-dB training data. This corrupted
speech was then compensated to the 12.5-dB reference statistics
using CDCN. These data represented the equivalent of the CDCN-
compensated noisy data in our pseudo-stereo set.

The same 100 clean utterances from WSJ0 were also corrupted by
additive noise at an SNR of 12.5 dB in a manner identical to that
used to obtain data for training the 12.5 dB HMMs. These data
represented the training-environment counterpart of the noise-cor-
rupted CDCN-compensated data in the “stereo” set.

The combination of the corrupted CDCN-compensated utterances
and the corresponding 12.5-dB corrupted utterances was used to
compute new HMMs from the original (12.5-dB) HMMs using
STAR.

Figure 8.Block diagram of the HMM derivation using STAR.
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In recognizing new speech, the incoming waveform is compen-
sated using CDCN and then recognized using the STAR-adapted
models.

5. SYSTEM PERFORMANCE ON THE 1995
ARPA HUB 3 EVALUATION DATA

5.1. Baseline Performance

The officially-reported results for the primary test set for the 1995
ARPA CSR Hub 3 evaluation were 13.9% and 29.2% word error
rates for the clean and noisy subsets of the evaluation data, respec-
tively. We also ran several additional experiments to evaluate the
improvements in recognition error rate provided by each of the
components of our compensation strategy, and these results are
summarized in Table 1 below.

Recognition times for the H3 task were about 70 times real time
for noisy speech and 29 times real time for clean speech. This
includes the time required to select the optimal warping in the case
of clean speech, and the time required for CDCN-compensation
and STAR adaptation in the case of the noisy speech. If we did not
adapt the 12.5 dB-HMMs using STAR, (i.e. if we used only a com-
bination of CDCN and the 12.5 dB models), the recognition times
for noisy speech were only about 36 times real time.

5.2. Performance without Adaptation to
Speakers and Envir onments

To evaluate the improvement provided by the speaker-normaliza-
tion procedure we recognized the clean speech of the evaluation
set on gender-specific models generated without speaker normal-
ization. We also recognized the noisy evaluation data using clean
speech HMMs and on the 12.5-dB HMMs to evaluate the
improvement obtained by using the 12.5-dB models over the base-
line system. These and other results described below are tabulated
in Table 1. It was found that the speaker normalization procedure
used for the evaluation reduced the relative error rate for clean
speech by 3.5 percent. Environmental compensation reduced the
relative error rate for noisy speech by 11.2 percent and the combi-
nation of noise-corrupted HMMs and environmental compensa-
tion reduced the relative error rate for noisy speech by 54.9
percent.

5.3. Impact of Pseudo-Stereo Data Used in
STAR Adaptation

To evaluate the improvement obtained by adapting the 12.5-dB
models to the CDCN-compensated speech we ran experiments
without using the STAR algorithm (i.e. we directly recognized the
CDCN-compensated speech using the 12.5 dB HMMs). Surpris-
ingly, the recognition accuracy without STAR was found to be
greater than that obtained using STAR adaptation of the models.
We attribute this anomaly to the fact that our method of generating
pseudo-stereo pairs for STAR adaptation was imperfect. While the
pseudo-stereo pairs were obtained by corrupting clean speech with
estimated channel and noise conditions for the session to be recog-
nized, this corruption was done in the mel-frequency log-spectral
domain where the components are actually obtained by integrating
the power spectrum over the Mel frequency bands. To confirm this
hypothesis we later conducted a test in which the STAR adaptation

of the models was performed with “perfect” stereo pairs calculated
from direct comparisons of the clean speech and noisy speech in
the evaluation sets. (According to the rules of the evaluation, this
side information was not available to the recognition system.) The
recognition error rate obtained with perfect stereo, 20.6%, was
considerably lower than the rate obtained with the pseudo-stereo
pairs.

5.4. Baum-Welch Session Adaptation

After the official evaluations were completed we performed a
series of “session-adaptation” experiments in which we adapted
the 12.5-dB HMMs to each speaker’s session using the Baum-
Welch algorithm. Unlike other recognition systems used in the
1995 Hub 3 evaluation, SPHINX-II uses a semi-continuous HMM
structure with only 256 elements in its codebook of distributions
[3]. This small number of parameters makes the use of clustering
techniques unnecessary.

Like most other adaptation or training techniques, Baum-Welch
session adaptation requires orthographic transcriptions. Since tran-
scriptions are not available for test data, we generated the tran-
scriptions automatically by recognizing the noisy speech in a first
pass using the non-adapted 12.5-dB HMMs. With these transcrip-
tions we followed the normal adaptation procedure to produce a
new set of adapted mean vectors and covariance matrices. With
these new statistics we performed recognition on the same data
used for adaptation. The procedure could be iterated as new and
more accurate transcriptions were produced with each new set of
means and variances. The final recognition error rate obtained in
this case was 23.3% for the noisy subset and 12.4% for the clean
subset of the 1995 H3 evaluation set, as shown in Table 1.

Since transcriptions generated by the decoder are inevitably error-
ful, we estimated the lower bound in error rate that can be pro-
vided by this technique by running a second experiment in which
we assume that the Baum-Welch adaptation procedure could make
use of “perfect” knowledge of the correct transcriptions. In these
experiments we adapted the means and variances of all the Gauss-
ians of the 12.5-dB HMMs, using all 15 sentences in a given ses-
sion and the correct transcriptions. The recognition error was
observed to stabilize after 5 iterations of Baum-Welch adaptation
to 16.4% and 8.6%, respectively, for the noisy and clean subsets of
the 1995 H3 evaluation set.

Clean
Speech

Noisy
Speech

Clean-speech HMMs, no speaker
or envir onment adaptation

14.4% 64.8%

Clean-speech HMMs, with speaker
normalization (official r esult)

13.9% –

12.5-dB HMMs, no envir onment
adaptation

– 32.9%

12.5-dB HMMs, CDCN and STAR
(official result)

– 29.2%

12.5-dB HMMs, CDCN only – 27.5%

12.5-dB HMMs, STAR with “per-
fect” stereo information

– 20.6%

Baum-Welch adaptation with
decoder-generated transcriptions

12.4% 23.3%



Table 1: Error rates on the 1995 ARPA Hub 3 evaluation using
alternate speaker and environment adaptation strategies. Offi-
cially-reported scores for the primary tasks are shown in bold face.
Contrast conditions labelled “perfect” include side information not
available in the actual evaluation.

6. SUMMARY AND CONCLUSIONS

In this paper we describe several procedures that have been
employed to ameliorate the adverse effects of unknown micro-
phones in noisy environments and speaker variability in large-
vocabulary speech recognition systems. The training and adapta-
tion procedures used for the official ARPA evaluations provided
relative decreases in error rate of 3.5 and 54.9 percent for clean
and noisy speech, respectively.

Despite the considerable benefits that can be provided by conven-
tional speaker and environment adaptation, we also observed that
the greatest improvement in recognition accuracy can be obtained
by simply re-training the HMMs using techniques such as session-
based Baum-Welch adaptation. Nevertheless, Baum-Welch adap-
tation is not a viable alternative for most systems that require real-
time operation, and for such systems a combination of a well-
trained HMM and a compensation technique such as CDCN
would provide the best recognition accuracy.
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