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ABSTRACT

In this work, we describe a subword unit approach for infor-
mation retrieval of items by voice. An algorithm based on
the minimum description length (MDL) principle converts an
index written in terms of words with vocabulary size V into
an index written in terms of phonetic subword units of size
M << V . We demonstrate that, with this highly reduced
vocabulary of subword units, improvements in ASR decode
speed and memory footprint can be achieved, at the expense
of a small drop in recall performance. Results on a music
lyrics retrieval task are demonstrated.

Index Terms— information retrieval by voice, subword
units, minimum description length

1. INTRODUCTION
Information retrieval by voice is becoming an increasingly
important application [1]. With the proliferation of smart-
phones, speech becomes the preferred input modality for
making queries to search engines, particularly when the
queries are long, complex, and would require a lot of typ-
ing.

A prototypical system for information retrieval by voice
is shown in Figure 1. The system contains two main compo-
nents: an automatic speech recognition (ASR) front-end and
an information retrieval (IR) back-end. The ASR front-end
decodes an input spoken query into an N-best list of word hy-
potheses. The N-best list is then submitted to the IR back-end,
which retrieves the top-K relevant documents for that query.

Typically, the language model (LM) used by the ASR is
formed from the entries in the databases to be indexed. As the
sizes of these databases increase, however, the ASR LMs also
grow larger as they incorporate all novel words from these
databases. As a result, ASR decoding speed using these LMs
increases measurably. Additionally, the ASR memory foot-
print also increases, making it harder to load an entire LM
into a small memory footprint device. Finally, IR precision
performance drops as the databases increase in size.

In this work, we seek to alleviate these scaling issues by
using a subword unit approach for information retrieval. An
algorithm based on the minimum description length (MDL)
principle converts a database written in terms of words with
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Fig. 1. Overview of an Information Retrieval by Voice for a
Song Lyric Task

vocabulary size V into a database written in terms of phonetic
subword units of size M << V . We demonstrate that, with
this highly reduced vocabulary of subword units, significant
reductions in ASR decode speed and ASR memory footprint
can be achieved, with little drop in IR performance.

As a platform for our experiments, the song retrieval task
was chosen. In this task, a user retrieves songs by speaking,
not singing, portions of a song’s lyrics.

2. BACKGROUND
Early attempts at building systems for information retrieval
by voice [2] [3] focused mainly on pointing out the robust-
ness these systems exhibited to ASR word error rates. With
the proliferation of massive internet-scale databases, however,
recent systems [4] have begun to observe the need to address
LM scaling issues as database size keeps growing.

Two recent approaches to handle LM scaling issues are
n-gram pruning [5] and language model compression [6].
While these approaches do resolve the decode time and mem-
ory footprint issues, it is still necessary to re-prune or re-
compress the LMs whenever the databases to be indexed
change. This is because the novel words introduced by these



databases need to be re-inserted into the LMs.
In this work, a different approach is taken, in which the

novel database are themselves rewritten in terms of subword
units. As a result, once a subword unit LM is built, it does not
need to be re-compiled. Rather, novel databases are simply
rewritten in terms of the subword unit inventory.

There have been many recent subword unit inventory cre-
ation methods in the recent literature[7] [8] [9] [10] [11]. All
of them have focused primarily on the use of subwords for
ASR, not retrieval, and in particular on their ability to handle
out-of-vocabulary words (OOVs). In this work, we focus our
analysis on subword unit gains for ASR decode time, mem-
ory footprint, and retrieval precision, deferring OOV analysis
to future work.

Our subword unit approach builds on our own earlier
work [12], and is inspired by the Morfessor [13] algorithm,
which relies on the minimum description length (MDL) prin-
ciple to perform morphological analysis of text. We choose
this approach because MDL incorporates an explicit com-
pression criterion, enabling the creation of subword unit
inventories with control over their total size. This property is
desirable in light of our efforts to address LM scaling issues.
In contrast, many of the earlier subword unit approaches aug-
ment a regular word-based LM with subword units, which
actually leads to LM size increase.

3. FROM WORDS TO SUBWORDS

Our definition of a subword unit may be gleaned from Fig-
ure 2. As an example, the word HOURGLASS is rewritten as
a sequence of two subword units AW R and G L AE S. Our
subword units are composed of a sequence of phonemes. A
subword unit may also span an entire word, as with HOUSE.
The subword unit inventory is thus a flat hybrid [10] collec-
tion of subword units that span portions of words, or entire
words. In the following sections, we describe how our algo-
rithm rewrites a database I in terms of a subword unit inven-
tory U .

3.1. Preliminary Definitions

An input database I is composed of a collection of terms t,
where each term is itself a sequence of words. In our case,
each term is a set of words comprising a song’s lyrics.

The set W of size V is defined to be the set of unique
words used by I . Using a pronunciation dictionary or a G2P
tool, W can be mapped to Q, the set of word pronunciations.
Since words can have more than one pronunciation, the size
of Q usually larger than V . The algorithm retains this for-
ward mapping W 7→ Q for future use. Each word has a count
cw which is the frequency of its occurrence in the database I .
Correspondingly, each pronunciation has a count cq , which
is set equal to the corresponding word count. Given Q, al-
gorithm segments each pronunciation q into a set of phonetic
subword units u:

HOURGLASS AW R + G L AE S
HOURLY AW R + L IY
HOUSE HH AW S
HOUSEHOLD HH AW S + HH OW L D
HOUSES HH AW S + IH Z
HOUSES(2) HH AW + Z + AH + Z

Fig. 2. Examples of words rewritten in terms of subwords.
Note that some words have multiple subword representations
due to the fact that they have different pronunciations.

qi → ua + ub + uc (1)
qj → ud + ua (2)

Note that some units, such as ua above, may be used in multi-
ple word segmentations. The set of unique units

⋃M
m=1{um} =

{ua, ub, uc, . . .} is termed the subword unit inventory U .
Each unit is associated with a count cu which represents the
frequency of times it occurs in the segmentation of the entire
index. In the example above, cua

= cqi
+ cqj

since ua is
used to rewrite both qi and qj . N =

∑M
m=1 cm is defined

to be the total unit count in the word corpus segmentation.
Each unit count cu may be converted to a probability pu by
normalizing each count by the sum of all the unit counts:
pu = cu/

∑M
m=1 cm.

3.2. Minimum Description Length Principle

The subword unit inventory algorithm utilizes the Minimum
Description Length (MDL) principle [13] to search for an in-
ventory of units U which minimize the sum of two terms,
L(Q|U) and L(U):

arg min
U

L(Q|U) + L(U) (3)

The left term, the Model Prediction Cost, measures the num-
ber of bits needed to represent Q with the current subword
unit inventory U . The right term, the Model Representation
Cost, measures the number of bits needed to store the in-
ventory U itself. As such, MDL principle finds the smallest
model which also predicts the training data well. The moti-
vation for doing this is that small models generalize better to
unseen data.

The Model Representation Cost sums the bits needed to
represent all the units in the inventory:

L(U) =
∑
u∈U

∑
phoneme∈u

− log p(phoneme) (4)

Here p(phoneme) is estimated from the frequency counts of
each phoneme in Q.

Likewise, the Model Prediction Cost measures the bits
needed to represent Q with the current subword unit segmen-
tation:



L(Q|U) =
∑
q∈Q

∑
u∈tokens(q)

− log pu (5)

Here tokens(q) is a function as in Equations 1 and 2 that lists
the subword unit segmentation for each pronunciation q.

The unit inventoryU which minimizes the cost above may
not have the desired M elements, so it is important to be able
to increase the weight of the Model Representation CostL(U)
relative to the Model Prediction Cost L(W |U). We do this by
introducing a regularization parameter λ which performs this
re-weighting:

arg min
U

λL(Q|U) + (1− λ)L(U) (6)

where 0 ≤ λ ≤ 1. Typically λ is chosen by the user interac-
tively until the desired number M of subwords is achieved.

3.3. Subword Unit Inventory Search

To find the optimal subword inventory U and segmentation
tokens(q), a greedy, top-down, depth-first search algorithm
is utilized. Shown in Figure 3 is pseudocode for the search
algorithm.

Initially each word w is a subword unit u of its own. At
every iteration, a table is maintained of the units in the cur-
rent inventory U , along with the cumulative code length as
defined by Equation 6. A random word is chosen and scanned
in a left-to-right manner, yielding different prefix-suffix sub-
word splits. For each split candidate, the cumulative code
length is computed. The split (or no split) yielding the low-
est code length is selected. In case of a split, splitting of the
left and right parts continues recursively and stops when no
more gains in overall code length can be obtained by split-
ting a node into smaller parts. After all words have been pro-
cessed once, they are again shuffled randomly, and each word
is reprocessed. This procedure is repeated until the desired
number of subword units in the inventory M is achieved.

3.4. Viterbi Segmentation of Novel Words

At the conclusion of the subword unit search algorithm in Fig-
ure 3, a subword unit inventory U is induced, where each unit
u has an associated probability pu.

Given a novel set of pronunciations Q′, the Viterbi algo-
rithm is used to segment each novel pronunciation q into sub-
word units u1, u2, . . . , un from the unit inventory U . with
smallest total bit cost

∑n
i=1− log pi. Shown in Figure 2 are

example Viterbi segmentations of words from an database.

3.5. Rewriting a Database and LM

Effectively, the Viterbi algorithm described above provides
the forward mapping from pronunciations to subword units
Q 7→ U . The forward mappings W 7→ Q and Q 7→ U can
be composed to provide the mapping from words to subword
units W 7→ U .

Algorithm splitsubwords(node)
Require: node corresponds to an entire word or a substring of a word
Note:

L(U) below represents the model representation cost
L(Q|U) below represents the model prediction cost

// FIRST, TRY WITH THE NODE AS A SUBWORD//
// UNIT OF ITS OWN //
evaluate L(Q|U) using node
evaluate L(U) using node
bestSolution← [L(Q|U) + L(U), node]

// THEN TRY EVERY SPLIT OF THE NODE //
// INTO TWO SUBSTRINGS //
for all substrings pre and suf such that pre ◦ suf = node do

for subnode in [pre, suf ] do
if subnode is present in the data structure then

for all nodes m in the subtree rooted at subnode do
increase cm by cnode

increase L(Q|U) if m is a leaf node
else

add subnode with cnode into the data structure
increase L(Q|U)
add contribution of subnode to L(U)

if L(Q|U) + L(U) < code length stored in bestSolution then
bestSolution← [L(Q|U) + L(U), pre, suf ]

// SELECT THE BEST SPLIT OR NO SPLIT //
select the split (or no split) yielding bestSolution
update the data structure, L(Q|U), and L(U) accordingly

// PROCEED BY SPLITTING RECURSIVELY //
splitsubwords(pre)
splitsubwords(suf)

Fig. 3. splitsubwords, a recursive, top-down, greedy,
algorithm for inducing the subword unit inventory based on
the MDL principle.

To rewrite a database I in terms of subword units, the
words in each term are scanned sequentially. Each word is
mapped to subword units using W 7→ U . However, since
some words have multiple pronunciations, the mapping is
one-to-many. One mapping is chosen randomly. Once a
database has been re-written in terms of subword units, the
LM is trained on the re-written database.

4. EXPERIMENTAL DESIGN
In this section, we describe our experiments, elucidating par-
ticular axes of variation and performance metrics.

4.1. Dataset Description

The dataset used in this work is the same as the one used by
[8]. The song collection consists of 35,868 songs. Each song
consists of a song title, artist name, album name, and the song
lyrics. A unique ID is created for each song by merging the
song title artist name, and album name. Shown in Figure 1 at
the top example fields for several songs.

The test set consists of 1000 utterances collected in the
following manner: 1000 songs were selected randomly from



the song database, and divided into groups of 50. Twenty
subjects (13 males and 7 females) were instructed to listen to
30-second snippets of 50 songs each, and to record any por-
tion of the lyrics that they heard. Subjects were also prompted
to transcribe their recording, which served as reference tran-
scripts (for calculating phone error rates).

The ground truth for the IR experiments is the set of songs
with the same title as the query song. In the general case,
using song title as a key addresses the retrieval of covers by
other artists, as well as songs that appear in more than one
album by the same artist. An exception table is used, however,
to handle cases when songs have different lyrics but similar
titles, e.g. Angel by Jimi Hendrix or Dave Matthews Band.
This exception table was built by hand.

4.2. ASR

The prototypical system shown in Figure 1, comprising of an
ASR front-end and an IR back-end, forms the core architec-
ture for experiments.

In this work, the CMU Sphinx-3 ASR system is used to
convert spoken queries into text. The input spoken query
is first converted into standard 39-dimensional MFCC fea-
ture vectors (cepstra and ∆ and ∆∆ features). Decoding
is performed using triphone HMM acoustic models trained
from Wall Street Journal data resampled to 8kHz. The word
pronunciations are obtained from the CMU dictionary when
available, or the NIST G2P tool [14] when not. Finally, the
LM is a trigram LM with Witten-Bell smoothing, built us-
ing the CMU Statistical Language Modelling toolkit. All of
these components are available as open source at [15]. In all
our experiments, we used Sphinx-3 to generate the 7-best hy-
potheses for each spoken query, which are then submitted to
the IR back-end for retrieval.

4.3. Information Retrieval

The IR back-end uses a vector space model approach for re-
trieval. Each song document forms a multidimensional fea-
ture vector v. The query also forms a vector q in same feature
space. A score Score(q, v) measures the similarity between
q and v. The songs with the top 7 scores are submitted for our
recall analysis.

After evaluating several different feature spaces and scor-
ing methods, the features used were the unique unigrams, bi-
grams, and trigrams present in documents and query, which
we call terms. The scoring method used was Score(q, v) =∑
∀t δ(t)IDF(t) where t ∈ {terms(q)

⋃
terms(v)}, δ(t) is

1 if the term t appears in both query and document, 0 other-
wise, and IDF(t) is the inverse document frequency of term t.
No document length normalization was performed.

4.4. Performance Metrics

The system architecture for our experiments is shown in Fig-
ure 1. The baseline system is word-word system, in which
the LM base unit and index base unit are both comprised of

words. A subword-subword system forms the main compar-
ison architecture with the baseline system. For both system
architectures, our metrics of performance are as follows:

Phone Error Rate (PER) : the number of insertions, dele-
tions, and substitutions made by the ASR engine. Com-
parison is made with the reference transcript for each
test utterance.

ASR Decode Time : The average time, in xRT units, taken
to decode the test set.

“1-call-at-7” : IR accuracy metric based on the k-call at n
[16], with k = 1 and n = 7. Since each test utterance
is associated with a corresponding set of “groundtruth”
songs, 1-call-at-7 measures the percentage of test utter-
ances for which the IR back-end retrieves at least one
of the ground truth songs in the top 7 results.

IR Query Time : The total time, in seconds, to perform the
IR lookup query of the whole test set.

4.5. Lyric Database Sizes

An important axis of variation is database size. Five different
song lyric databases, or lyricsets, were created: ls2000 ⊂
ls4000 ⊂ ls8000 ⊂ ls17000 ⊂ ls36000. The small-
est lyric set, ls2000 contains the 1989 songs that serve as
groudtruth to all test set utterances. Each larger lyric set con-
tains all the lyrics from the previous set, plus an additional
set of random lyrics. The largest set ls36000 contains all
35868 songs. The size of the lyric sets increases exponen-
tially from smallest to largest.

4.6. Subword Unit Inventory Generalization

Another axis of analysis for subwords is generalization: given
a subword unit inventory created from a certain lyricset, how
is retrieval performance affected when that inventory is used
to rewrite novel databases, while keeping the subword recog-
nition LM fixed.

In this regard, two experiments are performed: In the
first experiment, termed largest-set-subwords, a subword unit
inventory is induced from the largest lyric set, ls36000,
and used to rewrite all smaller lyricsets. Recognition for all
lyric sets is performed using the fixed subword LM formed
from ls36000. In the second experiment, termed smallest-
set-subwords, a subword unit inventory is induced from the
smallest lyric set, ls2000, and used to rewrite all larger
lyricsets. Recognition for all lyric sets is performed using the
fixed subword LM induced from ls2000.

4.7. Subword Unit Inventory Sizes

Finally, our last axis of analysis is the number of subword
units induced in the subword unit inventory. Five different
subword unit inventory sizes were chosen. For the largest-
set-subwords experiment, these sets are 5k, 10k, 20k, 30k,
and 45k, each denoting the number of subwords induced.
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The largest set comprises 45k subwords, just shy of the to-
tal number of unique words V in ls36000, 46939. For the
smallest-set-subwords experiment, these sets are 2k, 4k, 5k,
6k, and 8k. The largest set comprises 8k subwords, just shy
of the total number of unique words V in ls2000, 8940.

5. RESULTS AND DISCUSSION
Figure 4 plots recognition accuracy (in PER) as a function
of vocab size for the word baseline system, the largest-set-
subword system, and the smallest-set-subword system. In
the word experiments, vocabulary size varies with the lyricset
used to build the word LM. In the subword experiments, vo-
cabulary size varies with the desired inventory size for LMs
induced from the largest (or smallest) lyric set. Clearly, PER
is higher for subword unit LMs than for word-based LMs,
which is expected given the increase in LM perplexity caused
by subword unit induction.

Figure 5 depicts the ASR Decode time (in xRT) as a func-
tion of vocab size. The subword unit LMs seem to result
in xRT gains over word-based LMs. For example, the 2k-
subword LM presents an xRT gain of 3 over the largest word
LM. Additionally, word-based LMs are slower than subword-
based LMs for a given vocabulary size. More interestingly,
word-based recognition time increases at a rate faster rate than
subwords.

The number of N-grams in a LM is used as a proxy for
ASR LM memory footprint. Figure 6 plots the number of N-
grams in the LM as a function of vocab size. As shown, word
N-gram count increases with vocabulary size. Subword N-
gram counts remain fairly constant, however, and depend on
whether the LMs were created from the largest lyric set or the
smallest lyric set. The smallest-set subword LMs represent
a size reduction of a factor of 10 compared with the largest
word LMs or largest-set subword LMs.

Figure 7 depicts the retrieval performance for a fixed
lyricset, ls36000, as a function of vocab size. Subword
unit LMs built from the largest lyric sets cause a 4% drop in
1-call-at-7 performance relative to word-based LMs. Surpris-
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ingly, smallest-set subword LMs cause a smaller 2% drop in
performance. Retrieval performance is flat across subword
unit inventory size.

Figure 8 displays the retrieval performance as a function
of different lyricset sizes. The subword inventory size is
fixed at 5000 subwords. Performance, as expected, decreases
with larger lyricsets. As compared to the word system, the
subword-based ones result in moderate degradation, less than
3% for the smallest-set-subword condition and less than 5%
for the largest-set-subword condition, considerably better
than what one could expect from the degradation in PER in
Figure 4.

Figure 9 depicts the total IR lookup time for the whole
test set of 1000 utterances. As expected, this increases with
the lyricset size, but is negligible compared with the recogni-
tion time. Still, the recall times for both subword-based con-
ditions are comparable to the word-based system, considering
that document size is much larger after words are converted
to subword units.

6. CONCLUSION

Our results indicate that it is indeed possible to build a sub-
word system that performs comparably to a word-based sys-
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tem. A gain in ASR decode speed and LM memory footprint
comes at the price of a small drop in recall. As an example,
the 2k-subword system in the smallest-set experiment exhib-
ited a 2-3% drop in recall relative to a complex word-based
system, but with a gain of 10 in LM memory footprint, and a
gain of 3 in ASR decode speed. Furthermore, we have shown
that recognition with fixed subword LM does exhibit general-
ization capacity: the ability to be used to rewrite and retrieve
documents from a larger novel database.

It is worth pointing out that, surprisingly, smallest-set sub-
word LMs outperformed largest-set subword LMs. This is
probably due to the fact that the MDL subword algorithm is
forced to break up largest-set words into smaller pieces in or-
der to achieve the desired inventory size. Smallest-set sub-
words are thus longer and more word-like, which explains
their superior performance.

While our results are encouraging, it is important to note
that further experiments are needed on other ASR and IR plat-
forms to verify the generality of our results. Additionally,
future work includes exploring the benefit of using subword
units when the test set has a significant percentage of OOV
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terms, as well as applying our algorithms to other types of
datasets besides music lyrics.
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